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orientation’s introduction. Years ago, Karl
Lieberherr advocated adaptive, or structure
shy, programming. This object-oriented pro-
gramming (OOP) extension attempts to bind
algorithms to data structures as late as possi-
ble to maximize the software’s modularity,
purportedly making software easier to under-
stand and maintain.1 (Lieberherr’s Demeter
Project met with limited success because it re-
quired using modified programming lan-
guages.) From a more database-oriented per-
spective, semistructured data management
systems let programmers represent data whose
structure is not completely regular.2 Here, the
ubiquitous (and often hyped) XML-based
technologies,3 in particular, have induced a
new wave of advances.

We introduce a novel OOP extension,
merging both philosophies (adaptive program-
ming and semistructured data management),

that you can use transparently in current pro-
gramming platforms. Lazy types model vari-
ability without increasing implementation
complexity. In situations where the use of
standard design patterns could hinder design
understandability, lazy types deal with com-
plexity by keeping track of a unique type
while avoiding the artificial multiplication of
types traditional OOP solutions introduce.
Moreover, lazy types reduce potential error
sources as well as the amount of code pro-
grammers must write. 

A case study
We can use existing OO models to repre-

sent complex data and behavior, but the data’s
structure (and, hence, its behavior) must stay
the same. Yet, many applications must deal
with data that doesn’t easily fit into static
models, and the data can present structural ir-
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regularities (for example, data collected from
data sources with different schemas).

So, the objects that make up an OO system
at runtime might need to act on varying
amounts and kinds of data. Methods might
need alternative implementations to account
for this variance. All in all, program behavior
should adapt itself to the data available at
each moment.

We can use standard class hierarchies and
strategies to handle these cases, but they can
become too complex and difficult to main-
tain given the conditional logic needed to dy-
namically adjust alternative implementation
strategies. 

For example, suppose that we need to de-
velop a software system that will provide up-
to-date information about the farms in a cer-
tain geographical region. The system will
provide information such as the area for each
plot of land devoted to a single crop and the
number of trees in each plot. Our system will
also provide aerial images of the farms for in-
spection. Government agencies find this kind
of information to be extremely useful because
they usually need to forecast annual produc-
tion, measure crop rotation, estimate losses
due to natural disasters, or budget funds for
subsidizing farming activities.

However, the information available for
each plot at any moment might vary. There
might be some basic registry data for all plots,
aerial images for some, and detailed historical
records for only a small fraction of them. In
such situations, when we want to compute a
given plot’s area, the available information
might range from a rough location of the plot
to its exact perimeter. Suppose the property
registry provides its actual area so that we
don’t need to estimate it. We could approxi-
mate the plot’s number of trees by using the
plot area and the average tree density for a
certain kind of crop. We could also automati-
cally compute that number from an aerial im-
age once we know the plot’s geographical lim-
its. In short, we have alternative ways to
compute what we’re interested in, sometimes
with differing degrees of precision, sometimes
from different data sources.

Then again, data might not always arrive in
the same order nor be available indefinitely.
For instance, a survey process providing infor-
mation on plots might be at different stages
for different geographical zones. The collected

information might also become outdated with
time. These dynamic changes make our prob-
lem even harder.

Conventional solutions
When we face a problem such as our case

study, conventional OO design techniques
(class hierarchies and the strategy design pat-
tern, in particular) provide potential solutions.

Class hierarchies
We can create a class hierarchy and override

method implementations when appropriate,
thus providing the needed polymorphism. In
our example, an abstract class might contain an
implementation of the GetTrees() method
that would estimate the number of trees from
the plot area. However, we could compute this
area in several other ways depending on the
available information. Subclasses of the base
abstract class would be responsible for these
alternative implementations. If we had actual
images of the plot, we could also override the
GetTrees() method of the Plot class and
analyze those images by using image morphol-
ogy techniques to obtain the actual number of
trees in the plot (see figure 1).

The base classes in a class hierarchy could
become interfaces if they were completely ab-
stract. In our example, the Plot class would
just define the common interface for all its
subclasses in the hierarchy.

The use of class inheritance and polymor-
phism lets us manage alternative implementa-
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Figure 1. A class 
hierarchy for the plot
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tions for GetArea() and GetTrees(). How-
ever, even small changes in our understanding
of the problem domain could cause huge reor-
ganizations of the class hierarchy.

In our naive example, we were luckily able
to put all of the logic into the class implemen-
tations without having to duplicate any code.
However, it’s more likely that no simple inher-
itance hierarchy will fit our needs. For exam-
ple, we could compute the number of trees
from the aerial image and prefer to rely on
registry data about the plot area, a situation
that’s beyond the scope of the class hierarchy
in figure 1.

Moreover, because most programming lan-
guages today only accept single-implementa-
tion inheritance, a carefully crafted class hier-
archy might easily become worthless when the
design must adopt variability in several inde-
pendent dimensions. Multiple-interface inher-

itance would be useful here from a declarative
point of view, although it wouldn’t avoid the
need to implement the needed functionality
variants, which would probably include a lot
of duplicated code. (At the very least, if we
properly avoided the proliferation of dupli-
cated logic, the resulting code would include
calls to the same methods time and again.)

A more subtle drawback of class hierar-
chies representing evolving objects appears
when we obtain new data about a particular
object. Then, the object might need to change
its behavior and, hence, its type. Although
the object would keep its external interface,
the object type would change and the object
identity would be lost with that change. In
our example, that could happen if we receive
an aerial image corresponding to a plot we
had initially classified as a RegistryPlot in-
stance. We might also need the inverse type
migration, from VisualPlot to Registry-
Plot, if the aerial image becomes outdated.
Although such changes might seem reasonable
at first, they are unsound if we must track an
object’s identity during its lifetime.

Strategies
When it’s crucial to keep the object identity

and when the problem domain gets so compli-
cated that a class hierarchy becomes unman-
ageable, we can choose to not create such a
hierarchy. We could include everything in a
single monolithic class, including the condi-
tional logic needed to select the suitable imple-
mentation for GetArea() and GetTrees()
(see figure 2a).

This monolithic solution helps us keep ob-
ject identities through their complete lifetime
and avoid class hierarchy reorganizations dur-
ing maintenance. However, the programmer
must still maintain this poorly modularized
code, including all the conditional logic needed
for each method to choose the proper imple-
mentation depending on the current object
state.

The well-known strategy design pattern4

can help us properly modularize the solution
to our problem. The strategy design pattern
decouples the data an object encapsulates
from the implementation of the algorithms
that support the desired variability in object
behavior. The resulting design would look like
figure 3.

As the UML class diagram in figure 3

Figure 2. (a) A single
monolithic Plot class
would contain the 
conditional logic needed
to select a suitable 
implementation for 
the GetArea() and 
GetTrees() methods.
(b) The implementation
of the GetArea() and
GetTrees()methods
using strategies, which
must be updated 
whenever the object
state changes.

public float GetArea() {

if ( isActualAreaAvailable() )

return area;

else if ( isPerimeterAvailable() )

return GetAreaFromPerimeter();

else

return UNKNOWN_AREA;

}

public float GetTrees() {

if ( isAerialImageAvailable() )

return EstimateTreesFromPhoto();

else if ( !unknownArea() && isCropKnown() )

return GetArea() * AverageTreeDensityForCrop();

else

return UNKNOWN_NUMBER_OF_TREES;

}

(a)

public float GetArea() {

return areaStrategy.GetArea(this);

}

public float GetTrees() {

return treeCountStrategy.GetTrees(this);

}

(b)



shows, we must add two new attributes (data
fields) to the Plot class to keep the strategies
responsible for implementing the GetArea()
and GetTrees() methods. These methods’
implementations are now trivial because they
just delegate to the corresponding strategy (see
figure 2b).

Unfortunately, those strategies must change
when the object state changes. So, we must
also include conditional logic to update the
corresponding strategies every time the object
state changes so that we invoke a suitable
strategy given the available data. An ancillary
UpdateStrategies() method could keep
strategies up to date, but we should still re-
member to invoke that method every time the
object state might change (for example, at the
end of all setter methods). Every constructor
should also specify a default strategy for each
varying method.

It’s obvious that the strategy design pattern
elegantly solves some of the problems rigid in-
heritance hierarchies cause. However, it adds
unnecessary implementation complexity and
makes the programmer responsible for main-
taining error-prone conditional logic to con-
trol the policy that determines which alterna-
tive implementation to use in each situation
for each particular object.

Room for improvement
At first glance, we might use the previous

solutions to solve our problem. However, they
carry hidden costs that might emerge during
system maintenance and evolution. When, as
usually happens, the decision on what alterna-
tive strategy to use depends solely on the avail-
able information, previous solutions reflect
implicit code duplication (that is, the condi-
tional logic needed to set the ad hoc strategy).
But we all know that we should always strive
to avoid code duplication. This is where lazy
types, which provide a transparent solution
for our need of ad hoc polymorphism, are at
their best.

Lazy types defined
Lazy types offer a more flexible solution for

coping with the dynamic selection of alterna-
tive implementation strategies. Lazy types let
objects change behavior at runtime. Lazy ob-
ject behavior automatically changes when the
object state changes. Additionally, lazy types
easily fit into existing development practices.

As we’ve seen, traditional OO designs
work better when the data’s structure doesn’t
vary. Irregular data handling in conventional
OO modeling is difficult. It tends to add a lot
of artificial complexity to the implementation
of relatively common situations. When we
need to manage entities with differing preci-
sion levels or when entities present structural
irregularities, we require more expressive and
powerful modeling techniques to concisely de-
fine the type of a given class of objects.

In conventional OOP, a type describes a set
of objects equipped with certain operations.
Classes are implementation modules that de-
fine types in OOP languages. Usually, a class
sets up a single structure and behavior that are
common to all its direct instances; you estab-
lish object structure and behavior beforehand.

By definition, a lazy type’s structure and be-
havior dynamically adapt to the available data
at the instance level. As with conventional
types, a set of attributes determines its struc-
ture, and a set of method signatures defines its
interface (see figure 4).

A lazily typed object (lazy object, for short)
encapsulates a set of attributes. However, this
set is not immutable in lazy objects, even
though it’s always a subset of the set of attrib-
utes defining the lazy type.

S e p t e m b e r / O c t o b e r  2 0 0 5 I E E E  S O F T W A R E 1 0 1

+GetArea()
+GetTrees()

-area
-perimeter
-photo

Plot

+GetArea()

AreaStrategy

+GetArea()

RegistryAreaStrategy

+GetArea()

GeometricalAreaStrategy

+GetTrees()

TreeCountStrategy

+GetTrees()

ApproximateTreeCountStrategy

+GetTrees()

ImageTreeCountStrategy

1

* *

1

Figure 3. Use of 
strategies to solve 
the plot problem.



A lazy object’s structure doesn’t have to
perfectly fit its whole type definition. Some at-
tributes might not always be present in a lazy
object. The set of attributes dynamically
evolves during a lazy object’s lifetime.

Alternative method implementations de-
scribe lazy-type behavior for different structural
situations. Due to these alternative method im-
plementations, a lazy object’s behavior can
change dynamically depending on the available
data. Alternative method implementations
share their signature, so the type maintains its
external interface and the programmer can
transparently use lazy objects.

Invoking a lazy method will automatically
delegate to one of the alternative implementa-
tions according to the object’s current state.
The implementation used will depend on the
data each alternative method implementation
needs. If a given attribute isn’t available and a
method implementation needs that attribute
value, the lazy method won’t use that alterna-
tive implementation. Instead, the lazy method
will automatically invoke the alternative that
best fits the current object state.

So, a lazy object will only incorporate the
attributes it really needs at each moment and
its behavior will change accordingly. In prac-
tice, you can automatically derive a lazy ob-
ject’s dynamic configuration from the source
code of the alternative implementation strate-
gies without requiring the programmer to add
conditional logic or increasing the design
model complexity.

Lazy types in practice
We recommend the following simple ap-

proach for defining lazy types in practice:

■ Determine the set of methods that define
the type interface. Because the interface
must drive the implementation, and not
the other way around, we start by focus-
ing on the type interface.

■ Discover the largest set of potential attrib-
utes for the lazy type (that is, all the at-
tributes we think the type could ever
have). This set of attributes becomes the
lazy type’s structural description.

■ For each method included in the type in-
terface, create the different alternatives
that will implement the behavior associ-
ated with the method under different situ-
ations (that is, provide the alternative
method implementations).

Once you’ve defined a lazy type, you can use
lazily instantiated objects as standard objects
in your programming language of choice.

Current programming platforms provide a
defined method for adding declarative informa-
tion to runtime entities such as classes, meth-
ods, and instance or class variables.5 Metadata
(whether attributes in .NET or annotations in
Java) is stored with your program at compile
time, so that you can retrieve and use it at run-
time. This feature allows for the easy defini-
tion and transparent use of lazy types in stan-
dard programming languages.

Let’s go back to our plot representation
problem for a moment. First, we define the ex-
ternal plot interface—that is, the part of a plot
behavior that stays the same regardless of its
internal structure. In our example, the inter-
face would at least include the GetArea()
and GetTrees() methods. This interface be-
comes the lazy type’s public interface.

Next, we identify all the data we might col-
lect about a plot—namely, its observed area
(observedArea), its geographical perimeter
(perimeter), and an aerial photograph
(photo).

Finally, we design alternative method imple-
mentations and implement the lazy Lot class
that will replace our original Plot class. For in-
stance, figure 5 shows how the lazy Lot class
would look in C#. As you can see in the source
code, a [Lazy] metadata attribute indicates
that the class corresponds to a lazy type. An-
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other attribute, [AlternativeImplementa-
tion], marks the alternative method imple-
mentations that describe the lazy lot objects’
dynamically varying behavior.

Our lazy class implementation in figure 5
looks like a standard class and, in fact, it can
be unit tested as such with NUnit (www.
nunit.org). However, it avoids the need to cre-
ate a class hierarchy, and it lacks the artificial
complexity of a strategy-based solution.

A reflective-object factory4 creates lazy ob-
jects implementing the public lot interface.
This factory permits the flexible instantiation
of plots and their dynamic evolution. To cre-
ate a lazy lot object, we would type

Lot lotObject = (Lot) LazyFactory.

Create(typeof(Lot));

Once the lazy-object factory creates a lazy
object, setting object properties will make strate-
gies change automatically without programmer
intervention. Figure 6 illustrates the evolution a
lazy lot object might experience at runtime. You
just invoke the object-published methods as
usual, letting the underlying infrastructure select
a suitable implementation alternative.

Implementation issues
We developed a proof-of-concept imple-

mentation of lazy types for the .NET Frame-
work. Our generic library, freely available
from http://elvex.ugr.es/software/lazy, allows
the use of lazy types as described in this article.

Metadata enables the transparent use of
lazy-typing capabilities in our applications.
Metadata attributes tag lazy classes and define
alternative method implementations. For in-
stance, to support lazy types in the .NET
Framework, we created the [Lazy] and [Al-
ternativeImplementation] attributes in
C# (see figure 7 on page 105).

Our implementation parses compiled inter-
mediate code (Microsoft intermediate lan-
guage, or MSIL, in the .NET Framework) to
build a lazy-object model. We can then use a
simple dataflow analysis of the alternative
method implementations, as indicated by the
metadata attributes, to determine when to in-
voke each alternative implementation. By us-
ing this information, implementation strate-
gies can change accordingly in response to
newly available data.

Our lazy-object factory dynamically creates
new types to represent lazy objects using the
reflection capabilities included in the .NET
Framework. You can use reflection—an exe-
cuting program’s ability to examine itself—to
discover metadata about types at runtime.
Combined, metadata and reflection are ex-
tremely useful when we must perform tedious
programming tasks.6 In our context, reflection
is essential when analyzing class structure and
modifying object structure at runtime.

Even though our proof-of-concept implemen-
tation of lazy types uses reflective programming,
we could have alternatively used metadata at
compile time, following a code generation ap-
proach.7 A preprocessor could create standard
C# source code from the metadata-tagged lazy-
type description. In programming languages
without reflective capabilities, this would be
our only choice for implementing lazy types.

Both styles of metadata-based program-
ming help programmers avoid writing repeti-
tive and error-prone code.
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Figure 5. The lazy Lot
class implemented in C#
for the .NET Framework.
A Java implementation
would be similar. You
would just need to use
the Java annotations’
syntax instead of the
.NET attributes.

[Lazy]

public class Lot {

private float observedArea;

private Polygon perimeter;

private Image photo;

…

public float GetArea () {

return observedArea; 

}

[AlternativeImplementation(“GetArea”)]

protected float GetAreaFromPerimeter () {

return perimeter.GetArea();

}

public int GetTrees () {

return (int) ( GetArea() * AverageTreeDensity );

}

[AlternativeImplementation(“GetTrees”)]

protected int GetTreesFromPhoto () {

return ImageMorphologyAnalyzer.GetObjectCount

(photo, perimeter, AverageTreeSize);

}

…

}
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Figure 8 depicts the overall design of a lazy-
typing framework for conventional program-
ming platforms. The LazyFactory instantiates
lazy objects. When the programmer invokes
the LazyFactory.Create(type) method, the fol-
lowing steps take place:

■ The LazyFactory builds a LazyOb-
jectModel to describe the lazy type (in-
cluding the LazyMethodModels and
LazyFieldModels representing its meth-
ods and fields). This lazy-type model con-
tains all the information needed to config-
ure lazy objects dynamically, including

data about alternative method implemen-
tations. In our implementation, we derive
the LazyObjectModel at runtime di-
rectly from the MSIL code so that the
original source code isn’t necessary.

■ The LazyFactory dynamically creates a
new type (represented by a LazyType and
its constituent LazyMethods) from the
LazyObjectModel. Once we have the
lazy type, we can instantiate objects be-
longing to this dynamically created class.

The resulting lazy object will automatically
adapt its behavior to its current state during
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+GetTrees()

-perimeter

Lot

GetArea() and GetTrees()
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the aerial photograph to compute
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A redistribution of the territory invalidates the lot limits. 
The lot area is now obtained from the registry information
 (that is, the area field). The aerial image is kept, although
it can't be used to compute the number of trees in the lot 
because its geographical limits are currently unknown. 
The lazy object reverts to the original estimation of trees 
from the lot area.
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Figure 6. Evolution of a
lazily typed lot object.



its entire lifetime. This exempts the program-
mer from having to write any conditional
logic by hand.

Obviously, both the creation of the generic
model for the lazy type and the creation of the
new type derived from this model occur only
once. At runtime, the LazyFactory stores gen-
erated models and types in an internal cache.
This way, the instantiation of new lazy objects
doesn’t degrade application performance.

When many implementation alternatives are
present for lazy methods, developers might
have difficulty visualizing system behavior due
to the sheer number of states the system can be
in. This is true regardless of whether they use
lazy types or the more conventional strategy de-
sign pattern. In the future, we plan to develop
supporting tools to alleviate this problem.

In any case, lazy types reduce the amount
of code a programmer must write when com-
pared to previous alternatives. Additionally,
lazy types reduce potential error sources be-
cause they fully automate the strategy selec-
tion process. Thus, lazy types make the result-
ing code less complex and easier to maintain.

A s Eric Evans points out in Domain-
Driven Design: Tackling the Com-
plexity in the Heart of Software:

Domain models contain processes that are not
technically motivated but actually meaningful
in the problem domain. When alternative
processes must be provided, the complexity of 

choosing the appropriate process combines
with the complexity of the multiple processes
themselves, and things get out of hand.8

Multiple implementation strategies can
represent those alternative processes. Whereas
hand-coded conditional logic chooses among
them, adding implementation complexity, lazy
types eliminate the need to implement that
choice explicitly, reducing the implementation
complexity to the inherent complexity of the
problem domain.

A general lazy-typing framework suffices to
provide standard OOP platforms with the
flexibility lazy types offer. Lazy types could be
the link we need to seamlessly deal with semi-
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Figure 7. The C#
implementation of 
the [Lazy] and
[Alternative-

Implementation]

attributes that support
lazy types in the .NET
Framework. 

[AttributeUsage(AttributeTargets.Class)]

public class LazyAttribute : Attribute {

}

[AttributeUsage(AttributeTargets.Method)]

public class AlternativeImplementationAttribute : Attribute {

private string method;

public AlternativeImplementationAttribute (string method) {

this.method = method;

}

public string Method {

get { return method; }

}

}

+Create()

LazyFactory

LazyType

+LazyMethod()
+InvokeMethod()

-type

LazyObjectModel

+Used()
+Defined()

LazyFieldModel

+Uses()
+Defines()
+Calls()

LazyMethodModel

LazyMethod

Figure 8. Lazy-object
framework 
implementation details.



structured data in conventional software de-
velopment environments. At least, we believe
they’re a first step in the right direction.
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