Data Min Knowl Disc
DOI 10.1007/s10618-011-0218-x

Using trees to mine multirelational databases

Aida Jiménez - Fernando Berzal -
Juan-Carlos Cubero

Received: 29 October 2009 / Accepted: 7 March 2011
© The Author(s) 2011

Abstract This paper proposes a new approach to mine multirelational databases.
Our approach is based on the representation of multirelational databases as sets of trees,
for which we propose two alternative representation schemes. Tree mining techniques
can thus be applied as the basis for multirelational data mining techniques, such as
multirelational classification or multirelational clustering. We analyze the differences
between identifying induced and embedded tree patterns in the proposed tree-based
representation schemes and we study the relationships among the sets of tree patterns
that can be discovered in each case. This paper also describes how these frequent
tree patterns can be used, for instance, to mine association rules in multirelational
databases.

Keywords Multirelational databases - Frequent itemset mining -
Association rules - Tree pattern mining

Responsible editor: Eamonn Keogh.

A. Jiménez (X)) - F. Berzal - J.-C. Cubero

Department of Computer Science and Artificial Intelligence, ETSIIT—University of Granada,
18071 Granada, Spain

e-mail: aidajm@decsai.ugr.es

F. Berzal
e-mail: fberzal @decsai.ugr.es

J.-C. Cubero
e-mail: jc.cubero@decsai.ugr.es

Published online: 18 March 2011 @ Springer

A. Jiménez et al.

1 Introduction

Data mining techniques have been developed to extract potentially useful informa-
tion from databases. Classification, clustering, and association rules have been widely
used. However, many existing techniques usually require all the interesting data to be
in a single table.

Several techniques have been proposed in the literature to handle several tuples at
once. Some algorithms explore tuples that are somehow related, albeit still in the same
table (Tung et al. 2003; Lee and Wang 2007). Other algorithms, however, are able to
extract information from multirelational databases, i.e., they take into account not just
a single table, but all the tables that are connected to it (DZeroski 2003). For instance,
these algorithms have been used for multirelational classification (Yin et al. 2004) and
multirelational clustering (Yin et al. 2005).

In this paper, we propose two alternative representation schemes for multirelational
databases. Our representation schemes are based on trees, so that we can apply existing
tree mining techniques to identify frequent patterns in multirelational databases. We
also compare the proposed representation schemes to determine which one should be
used depending on the information we would like to obtain from the database.

Figure 1 shows an instance of the prototypical multirelational database with two
relations: basket and item. Our approach consists of transforming this database
into a set of trees, using one tree for representing each tuple in a particular relation
from the multirelational database. The result of this transformation, starting from the
basket relation, is shown in Fig. 2.

A typical solution to multirelational database mining problems consists of joining
all the relations of our interest into a single relation, usually called universal relation
(Fagin et al. 1982; Maier and Ullman 1983; Maier et al. 1984; Ullman 1990). Then,
classical data mining techniques can be applied to this universal relation. However,
join-based techniques suffer from a serious disadvantage: they do not preserve the
proper support counts. Figure 3 shows the result of joining the basket and item

basket
id date customer zipcode
1 Thursday Anna 60608
2 Saturday Peter 60607
3 Thursday John 60611
item

basket product qty price
1 toner 2 75
1 printer 1 199
1 netbook 1 299
2 toner 3 75
3 toner 3 75
3 printer 2 199

Fig. 1 Simple multirelational database example

@ Springer

Using trees to mine multirelational databases

Cis=t_ > Gate=Thursda)> Zpoode=60607> (_item > Cem > tem

product=toner product=printer product=netbook
@ price=199 price=299

date=Saturday Zipcode=60607

Fig. 2 Tree representation of the multirelational database in Fig. 1

item ™ basket

basket product qty price date customer zipcode
1 toner 2 75 Thursday Anna 60608
1 printer 1 199 Thursday Anna 60608
1 netbook 1 299 Thursday Anna 60608
2 toner 3 75 Saturday Peter 60607
3 toner 3 75 Thursday John 60611
3 printer 2 199 Thursday John 60611

Fig. 3 Joined ‘universal’ relation from the multirelational database in Fig. 1

relations. In the resulting relation, the support of Thursday is 83% and the support of
the 60608 zip code is 50%, whereas, if we look at the original basket relation, we
can see that the actual support of Thursday is 66% and the actual support of the 60608
zip code is 33%. Using our tree-based proposal, we do not introduce such distortions
in our support counts and we always preserve their original values.

Our paper is organized as follows. We introduce some standard terms and related
work in Sect. 2. Section 3 describes two different schemes for representing multirela-
tional databases as sets of trees. Some implementation issues when deriving trees from

@ Springer

A. Jiménez et al.

actual multirelational databases are addressed in Sect. 4. Section 5 studies the kinds of
patterns that can be identified from such trees, while Sect. 6 explains how association
rules we can extract association rules defined over the trees obtained from a multirela-
tional database, as well as the constraints that can be used to improve the performance
of the association rule mining process. Finally, we present some experimental results
in Sect. 7 and we end our paper with some conclusions in Sect. 8.

2 Background

In this section, we introduce some basic concepts and published results on tree pattern
mining and multirelational data mining.

2.1 Tree pattern mining

A labeled tree is a connected acyclic graph that consists of a vertex set V, an edge
set E € V x V, an alphabet X for vertex and edge labels, and a labeling function
L:VUE — X Ueg, where ¢ stands for the empty label. The size of a tree is defined
as the number of nodes it contains. Optionally, a tree can also have a predefined root,
vp, and a binary ordering relationship < defined over its nodes (i.e. ‘<’ C V x V).

A canonical tree representation is an unique way of representing a labeled tree. This
canonical representation makes the problems of tree comparison and subtree enumer-
ation easier. Several alternatives have been proposed in the literature to represent trees
as strings (Chi et al. 2003). In this paper, we will use a depth-first-based codification.
In a depth-first codification, the string representing a tree is built by adding the label
of each tree node in a depth-first order. A special symbol 1, which is not in the label
alphabet, is used when the sequence comes back from a child to its parent.

Many frequent tree pattern mining algorithms have been proposed in the litera-
ture (Jimenez et al. 2010a). These algorithms are usually derived from either Apriori
(Agrawal and Srikant 1994) or FP-Growth (Han et al. 2004). Most tree pattern mining
algorithms follow the Apriori iterative pattern mining strategy, where each iteration is
broken up into two distinct phases: candidate generation and support counting. Some of
these algorithms are FreqT (Abe et al. 2002), TreeMiner (Zaki 2005b), SLEUTH (Zaki
2005a), and POTMiner (Jimenez et al. 2010b). Other algorithms follow the FP-Growth
pattern growth approach and they do not explicitly generate candidates. For instance,
the PathJoin algorithm (Xiao et al. 2003) uses compacted structures called FP-Trees
to encode input data, while Chopper and XSpanner (Wang et al. 2004) codify trees as
sequences and identify frequent subtrees by discovering frequent subsequences.

2.2 Multirelational data mining

Multirelational data mining techniques look for patterns that involve multiple relations
(tables) in a relational database. In a relational database, a relation can be defined as
r=(A",K", FK") where A" = {A], ..., A} is a set of attributes, K" C A" rep-
resents the primary key of the relation and FK" = {FK{,..., FK] } is the set of

@ Springer

Using trees to mine multirelational databases

Fig. 4 Multirelational database

schema in UML notation Person - o1 Residence
e . -1 g
-type
-name . .
. . lives at -location
-nacionality .
-City
1.1
owns
0.*
Car
-plate
-make
-type
Person
id name nationality houselD
1 Peter us 5
Residence
id type location city
5 apartment suburb London
Car
plate make type ownerlD
1234BCD Toyota SuUV 1
5678JKL Chevrolet sedan 1

Fig. 5 Multirelational representation of the database schema in Fig. 4

foreign keys in r. Each foreign key can be defined as F K} = (F}, s;) where F] C A"
and s; is the relation whose primary key K*' is referenced by F K] .

Figure 4 depicts the conceptual schema of a multirelational database using the
UML notation (Booch et al. 2005). Given such a conceptual schema, we can derive
the suitable logical data model for a relational database (Garcia-Molina et al. 2008;
Silberschatz et al. 2001). The relations obtained from the conceptual model in Fig. 4
are shown in Fig. 5 with some example tuples.

Many different techniques have been proposed in the literature to deal with mul-
tirelational databases in a machine learning context. We have classified the proposed
techniques into three broad categories: inductive logic programming, tuple ID propa-
gation, and tree-based algorithms.

— Many multirelational data mining algorithms come from the field of Inductive
Logic Programming (DZeroski 2003).
RELAGGS is a database-oriented approach based on aggregations that collects
data from adjacent tables (Krogel and Wrobel 2003). ACORA (Perlich and Provost

@ Springer

A. Jiménez et al.

2006) also employs aggregations to obtain a single table for classification prob-
lems.

Another relevant proposal that deals with multirelational structures is WARMR
(King et al. 2001). WARMR employs Datalog, a logic programming language
(Ullman 1988), and it is a level-wise algorithm like Apriori (Agrawal and Srikant
1994). It has been used to discover frequent patterns in chemical compounds.
Caraxterix (Turmeaux et al. 2003) was proposed to mine characteristic rules, where
characterization consists of discovering properties that characterize objects by tak-
ing into account their properties and also properties of the objects linked to them.

— Tuple ID propagation is an efficient approach for virtually joining relations, as well
as searching and propagating information among them. This technique propagates
the IDs of target tuples to other relations, together with their associated class labels
where appropriate. A classifier, dubbed CrossMiner (Yin et al. 2004), and a clus-
tering algorithm, called CrossClus (Yin et al. 2005), have been proposed using this
technique.

— Tree-based algorithms have also been used for multirelational data mining.
FAT-miner (De Knijf 2007), for instance, is a frequent tree pattern mining algo-
rithm that seems to implicitly employ a representation similar to our object-based
representation scheme, albeit the particular algorithm employed to derive the trees
from a multirelational database is not explicitly described in De Knijf (2007) nor
De Knijf (2006).

Trees have been used in many other data mining areas, although, to the best of our
knowledge, our use of trees in this paper has not been formally addressed elsewhere.
Decision trees, for example, have been applied for classification and clustering. TILDE
(Blockeel and Raedt 1998) is an ILP-based decision tree inducer. Another algorithm,
MRDTL (Leiva et al. 2002), applies decision trees to multirelational databases. In the
field of statistical learning, we can also find many other examples, such as probability
trees (Neville et al. 2003) and spatiotemporal relational probability trees (McGovern
et al. 2008). The former, as our proposal, uses foreign keys to mine multirelational
databases for classification purposes.

3 Multirelational database tree representation

In this section, we describe how we can obtain a set of trees from a given multirelational
database using two different representation schemes.

The analysis of multirelational databases typically starts from a particular relation.
This relation, which we will call rarget relation (or target table), is selected by the end
user according to her specific goals.

We introduce two different schemes for representing multirelational databases as
sets of trees. The key-based tree representation scheme draws from the concept of
identity in the relational model while the object-based representation scheme is based
on the concept of identity in object-oriented models. Relational databases rely on
primary keys to ensure that each tuple can be univocally referenced within a given
relation. In the object model, however, each object is already unique and no specific
key is needed. In object databases, each object is automatically assigned an unique

@ Springer

Using trees to mine multirelational databases

ID, which means that you can create objects that have identical field values but are
still different objects (Paterson et al. 2006).

The main idea behind our two representation schemes is building a tree from each
tuple in the target table and following the links between tables (i.e. the foreign keys)
to collect all the information related to each particular tuple in the target table. In both
representation schemes, we will use the name of the target table as the label at the root
of the trees.

From a database point of view, data can be classified into two types: atomic and
compound. Atomic data cannot be decomposed into smaller pieces by the database
management system (DBMS). Compound data, consisting of structured combinations
of atomic data, can be decomposed by the DBMS (Codd 1990). We will represent
the value ag; of an atomic attribute A; as A; = q; in a tree node and, for compound
attributes, as (A1, ..., A,y) = (ai, ..., a,). In the following sections, with the aim of
clarifying the notation, we will suppose that all the attributes are atomic, assuming
that, if they were compound, the notation (Ay, ..., A,) = (ai,...,a,) should be
used instead.

3.1 Key-based tree representation

The key-based tree representation scheme is based on the concept of identity in the
relational model, i.e., each tuple is identified by its primary key. Therefore, the root
node of the key-based tree representing a tuple in the target relation r will have, as
its unique child, the value of the primary key of the tuple in the target relation that is
represented by the tree. The children of this primary key node will be the remaining
attribute values from the tuple in the target relation. The rest of the tree is then built
by exploring the foreign keys that connect the target relation to other relations in the
database. From a conceptual point of view, we have two different scenarios:

— When we have a one-to-one or many-to-one relationship between two relations,
we will have a foreign key in the target table r pointing to another relation s. That
results in a subtree with the data from the tuple in s.

— When we have a one-to-many relationship, we will have a foreign key in the table
s that refers to the primary key of table r. In this case, many tuples in s may point
to the same tuple in r. A different subtree results from the data for each tuple in s
that points to the target tuple in r.

Formally, the algorithm needed to build a key-based tree starting from each tuple
in the target relation r = (A", K", FK") is the following:

— Build the root node, whose label is the name of the target relation, i.e. r.

— Add a child node to the root corresponding to the primary key of the tuple in the
target relation using the notation r. K" = k".

— For each attribute A} € A", add a child node to the primary key node using the
notation r.A} = aj.

— For each foreign key FK” = (F",s) pointing to another relation, s, create a
key-based tree representation for the tuple in s that is referenced by the tuple in
r,i.e.:

@ Springer

A. Jiménez et al.

— Add a child node to the primary key node using the notation r. F" = f”.
— Foreachattribute A7 € A* from the s relation, add a child node tothe . F”" = f”
node using the notation . F".A} = a;.

— For each foreign key F K® = (F?*, r) in another relation, s, pointing to our target
relation, r, create a key-based tree representation for each tuple in s that points to
our tuple in r:

— Add a child node to the primary key node with the name of the two relations,
the foreign key, and the primary key of s using the notation: r.s[F*].K* = k°.

— Foreach attribute Af € Af inthe s relation, add achild node tor.s[F*].K® = k*
using the notation r.s[F*].A} = a;.

— This algorithm is recursively applied, taking into account the foreign keys in s that
point to other relations in the database, as well as the foreign keys pointing to s
from other relations in the multirelational database.

Let us suppose that, in the multirelational database of Fig. 4, our target table is
person, its primary key is id, and its only attributes are as shown in Fig. 5. If we
have the tuple {1, Peter, US, 5}, its key-based tree representation will be the one we
see in Fig. 6a. In textual form (see Sect. 2.1), this tree can be represented as follows:

person
person.id=1
person.name=Peter 1
person.email=US 1
person.houselD=5 11

When we consider the links (foreign keys) between tables in our example database,
we find the two situations we have described above:

— The relationship between person and residence is one-to-one. Therefore, we
have a foreign key in the person table that refers to the house of each person.
This relationship leads to the subtree in Fig. 6b whose nodes are depicted with
vertical lines in their background.

— The relationship between person and car is one-to-many. Therefore, the car
table includes a foreign key that refers to the car owner. The key-based tree repre-
sentation of this relationship is shown by the nodes shaded with horizontal lines
in Fig. 6b.

3.2 Object-based tree representation

The object-based tree representation scheme is based on the concept of object identity
in an object-oriented model. In this representation scheme, we will use intermediate
nodes as roots of the subtrees representing each tuple in the multirelational database.
All the attribute values within the tuple, including the primary key attributes, will be
children of the root node representing the tuple in the tree.

As in the previous section, the tree is built by exploring the relationships between
the target relation and other relations in the multirelational database:

@ Springer

Using trees to mine multirelational databases

person.nationality=US

(a)

person.name =Peter

person.idhouse =5

person.id=1

person.houselD=5

person.houselD.location=suburb
erson.name=Peter |
person.houselD.city=London

person.nacionality=US person.houselD.type=apartment
person.carfownerID].plate=1234BCD) (person.carfownerID].plate=5678JKL

person.car{ownerlD].make=Chevrolet person.carfowneriD].ownerlD=1
person.carfownerlD].make=Toyota

person.carfowneriD}.type=SUV person.carfownerlD].ownerlD=1 person.carfownerlD].type=sedan

(b)

Fig. 6 Key-based tree representation of the multirelational database shown in Fig. 5

— The case of one-to-one and many-to-one relationships between two relations, r
and s, where r has a foreign key pointing to s, is now addressed by adding the
attributes of s as children of the intermediate node labeled with the names of the
foreign key attributes.

— When the relationship is one-to-many, i.e. when the relation s has a foreign key
that refers to the target relation r, a new subtree is built for each tuple in s that
points to the same tuple in r. These subtrees will have root nodes labeled with
the name of both tables and the foreign key involved in the relation, while their
children will contain all the attribute values from the tuples in s.

Formally, the algorithm to build a object-based tree starting from each tuple of the
target relation r = (A", K", F") is:

— Build the root node, whose label is the name of the target relation, i.e. r.

@ Springer

A. Jiménez et al.

— For each attribute A} € A,, including the primary key attributes, add a child node

to the root using the notation r. A} = a .

— Foreachforeignkey F K" = (F", s) pointing to another relation, s, create a subtree

with the data from the tuple in s that is referenced by the tuple in r:

— Add a child node to the root using the notation . F".

— For each attribute A7 € A® in the s relation, including primary key attributes,
add a child node to the intermediate node we have just created using the notation
r.F" Al =a;.

— For each foreign key F K® = (F?*, r) in another relation, s, pointing to our target

relation, r, create a subtree for each tuple in s that points to the target tuple in r:

— Add a child node to the root with the name of both relations and the foreign
key attribute names using the notation: r.s[F*].

— Foreachattribute A} € A* in the s relation, including the primary key attributes
in K*, add a child node to the r.s[F*] node that we have just created using the
notation r.s[F*].A} = a;.

— This procedure is recursively applied, taking into account the foreign keys in s that

point to other relations in the database, as well as the foreign keys pointing to s

from other relations in the multirelational database.

The example from Fig. 6 is now displayed in Fig. 7 using the object-based rep-
resentation scheme. The nodes decorated with vertical lines in Fig. 7b illustrate the
many-to-one relationship between person and residence, while the one-to-many
relationship between person and car is depicted by the nodes with horizontal lines
in their background.

The main difference between the object-based tree representation scheme and the
key-based one is that, in the object-based representation scheme, primary key attribute
values and non-prime attribute values appear at the tree level. Using the key-based rep-
resentation scheme, however, non-prime attribute values within each tuple appear as
children of the node representing the primary key.

It should also be noted that the object-based tree representation scheme generates
trees with more nodes than the key-based one, since it introduces ancillary intermedi-
ate nodes, i.e., those nodes that do not contain values and just represent the start of a
new tuple within the tree.

However, tree depth is typically lower in the object-based tree representation scheme
than in the key-based one. When representing tuples from the target relation, no key
nodes are needed in the object-based representation (i.e., the depth of the resulting tree
is 2, as in Fig. 6a). In the key-based representation, however, the primary-key node
adds a new level to the tree (i.e., the depth of the resulting tree is 3, as shown in Fig. 7a).

Section 5 will show how the use of these two different tree-based representation
schemes will be useful to identify different kinds of patterns, but first we should address
some implementation issues that arise in practice.

4 Deriving trees from a multirelational database

In this section, we discuss how we can traverse the foreign keys that connect individual
relations in a multirelational database.

@ Springer

Using trees to mine multirelational databases

person.id =5 person.name =Peter person.nacionality=US

person.houselD=5

(a)

person.nacionality=US

person.houselD
person.houselD.id=5 erson.idhouse.city=London
person.carfowner|D] h ID. =apart t
- PR(3qTovse!Dperpaitmen person.idhouse.location=suburb

person.carfownerID]

person.car[idOwner].type=sedan

person.carfownerlD].make=Chevrolet

person.carfownerlD].plate=5678JKL

person.car[ownerlD].ownerlD=5

person.carfownerlD].plate=1234BCD

person.carfownerlD]. make=Toyota person.car[ownerlD].ownerID=5
person.carfownerlD].type=SUV

(b)

Fig. 7 Object-based tree representation of the multirelational database shown in Fig. 5

4.1 Exploration depth

The connections between relations in a given multirelational database can be repre-
sented as a graph whose nodes are relations and whose edges represent foreign keys
connecting pairs of relations. Starting from the target relation, we can traverse such a
graph. The tree resulting from this traversal will grow each time we visit a new graph
node (relation) or revisit an already-discovered one. From the multirelational database
perspective, the size and depth of the resulting tree depends on the number of links
that we follow, starting from the target relation.

@ Springer

A. Jiménez et al.

When the multirelational database is complex, the relations that are far away from
the target relation might not always be interesting for us. Therefore, in practice, we
should select the relations we want to represent in the resulting trees or, at the very
least, bound the resulting tree depth.

We can define the exploration depth for the tree-based representation of multirela-
tional databases as the length of the longest paths from the target relation to the other
relations represented within the trees.

For example, in Figs. 6a and 7a, exploration depth is O, since only the target rela-
tion is represented in those trees. In Figs. 6b and 7b, however, exploration depth is 1
because we have followed all the foreign keys that connect our target relation to other
relations in our database.

4.2 Relationship traversal

When we are building the trees corresponding to each tuple in our target relation, all
the foreign keys between the relations represented in the tree are traversed forward
starting from the target relation. Apart from this, we must consider whether it is inter-
esting to go back through a foreign key that is already represented in the tree, i.e.
whether to traverse it backwards or not.

To solve this problem, we focus on the relationships in our (high-level) concep-
tual database schema rather than on the (low-level) foreign keys that appear in our
relational data model. When relationships are one-to-one or one-to-many, it is not
necessary to traverse them backwards because we would just obtain the same data that
we have already have included in the tree. However, if a relation is many-to-one or
many-to-many, we should traverse that relationship backwards to obtain all the tuples
that are connected to the tuple in our target relation that we are representing in tree
format.

For example, consider the object-based tree in Fig. 7b. When we reach the node
labeled person.car[ownerI D].ownerlD =5, we have represented the information
about Peter and his cars. Therefore, it is not necessary to go back through the per-
son—car relationship because we would obtain the information about Peter that we
already have in the tree. However, if the target table were car, as shown in Fig. 8,
we would first represent the information of the Toyota car. Next, we would traverse
the car—person relationship to obtain the information about the owner of the car
(Peter). Finally, we should go back through the per son—car relationship to represent
all the cars that Peter owns, not just the Toyota we started with.

5 Identifying frequent patterns in multirelational databases

The use of tree-based representation schemes for multirelational databases lets us
apply tree mining techniques to identify frequent patterns in multirelational databases.
Many algorithms have been proposed in the literature to identify frequent tree patterns,
including TreeMiner (Zaki 2005b), SLEUTH (Zaki 2005a), and POTMiner (Jimenez
et al. 2010b). Using these algorithms on the tree-based representation schemes we
have introduced in Sect. 3, we will be able to discover different kinds of patterns.

@ Springer

Using trees to mine multirelational databases

car.plate=1234BCD car.type=SUV
car.make=Toyota

car.ownerlD.name=Peter
car.ownerlD.car[ownerID]] -
f car.ownerlD.nacionality=US
car.ownerlD.id=5 car.ownerlD.car{owneriD]

car.ownerlD.car[ownerlD].type=Sedan
car.ownerlD.carfowner|D].type=SUV
car.ownerlD.car{owner|D].make=Chevrolet
car.ownerlD.car[ownerID].plate=5678JKL

car.ownerlD.car[ownerlD].plate=1234BCD car.ownerlD.car[onwerlD].make=Toyota

Fig.8 Object-based tree derived from the multirelational database in Fig. 5 using car as the target relation

In this section, we will analyze them and we will study the relationships among the
sets of patterns that can be discovered from a multirelational database.

5.1 Identifying different kinds of patterns

When working with tree pattern mining algorithms, different kinds of subtrees can be
defined depending on the way we define the matching function between the pattern
and the tree it derives from (Chi et al. 2005; Jimenez et al. 2010a):

— A bottom-up subtree T’ of T, with root v, can be obtained by taking one vertex v
from T with all its descendants and their corresponding edges.

— Aninduced subtree T' can be obtained from a tree T by repeatedly removing leaf
nodes from a bottom-up subtree of 7.

— An embedded subtree T’ can be obtained from a tree T by repeatedly removing
nodes, provided that ancestor relationships among the vertices of T are not broken.

Bottom-up subtrees are a special case of induced subtrees. Likewise, induced sub-
trees are a special case of embedded subtrees. Frequent tree pattern mining algorithms
usually focus on identifying induced or embedded subtrees as the ones shown in Fig. 9.
In the following subsections, we will examine the induced and embedded patterns we
can discover when using both the key-based and the object-based tree representation
schemes.

@ Springer

A. Jiménez et al.

person.nacionality=US

person.id =5 person.houselD

Fig. 9 An induced subtree (left) and an embedded subtree (right) from the tree shown in Fig. 7b

person.idhouse.city=London

person.houselD.location=suburb

5.1.1 Induced key-based patterns

The key-based representation scheme uses primary keys as root nodes for the dif-
ferent subtrees that represent each tuple in the tree. Since those primary key nodes
are not frequent in the tree database resulting from the multirelational database and
induced patterns preserve all the nodes as in their original trees, no induced patterns
starting at, or including, a primary key node will be identified using this representation
scheme. However, it is certainly possible that we can identify induced patterns starting
at foreign keys, since they might be frequent in the tree database. It should be noted,
however, that all the information they contain will usually be from the same relation
in our multirelational database.

For example, the person . id=1 node in Fig. 6b will not be frequent, since per-
son. idis the primary key of the target table and it appears in just one database tree.
Hence, no induced patterns starting at this node will be identified. It is possible, how-
ever, that induced patterns starting at node person.houseID=5 may be frequent
if there were more people sharing the same residence.

5.1.2 Embedded key-based patterns

If we are interested in obtaining patterns involving data from different relations in
the key-based representation scheme, we will have to resort to embedded patterns.
These patterns will miss some intermediate nodes, such as the primary key nodes,
but they will be able to combine information from different relations in our original
multirelational database.

For example, we could obtain the pattern in Fig. 10 from the tree in Fig. 6b. This
pattern represents that people living in suburbs and owning a sedan car are frequent
in our database.

person.car[owner|D].type =sedan person.houselD.location=suburb

Fig. 10 Embedded subtree obtained from the key-based tree in Fig. 6b

@ Springer

Using trees to mine multirelational databases

person.carfownerlD] person.car[owner|D] person.houselD

person.idhouse.location=suburb

(a)

person.carfownerlD] person.car[owner|D]
(b)

Fig. 11 Subtrees from the object-based tree in Fig. 7

person.idhouse.location=suburb

5.1.3 Induced object-based patterns

The object-based representation scheme uses intermediate nodes to represent refer-
ences to the different tuples represented within the trees. Using this representation
scheme, it is possible to identify larger induced patterns than before: Induced object-
based patterns can contain information from different relations, something that was
not possible when we used the key-based representation scheme.

When appearing as part of frequent patterns, the intermediate nodes provide addi-
tional information. They tell us how many tuples in one relation are related to a given
tuple in our target relation. For example, the tree pattern in Fig. 11a shows that people
living in suburbs and owning (at least) two cars are frequent in our database, without
considering car details. It should be noted that this kind of patterns cannot be identified
using the key-based representation scheme.

5.1.4 Embedded object-based patterns

When mining embedded patterns using the object-based representation scheme, we
will obtain all the patterns that were identified when we used the key-based represen-
tation scheme, as well as those patterns that contain intermediate nodes.

As happened with induced object-based patterns, the use of intermediate nodes will
let us identify patterns that were not discoverable using the key-based representation
scheme, such as the one shown in Fig. 11b, which is extracted from the tree in Fig. 7b.

However, it should be noted that number of patterns including intermediate nodes
could be high because these nodes are typically frequent in the trees representing the

@ Springer

A. Jiménez et al.

multirelational database. Hence, their discovery comes at a price that we will analyze
in our experiments in Sect. 7.

5.2 Induced versus embedded patterns

Induced and embedded patterns provide us different information about the multirela-
tional database.

In some sense, induced patterns describe the database in fine detail. Induced pat-
terns preserve the structure of the original trees in the database by maintaining the
relationships among all their nodes as they appear in the tree-based representation of
the multirelational database. This causes that, in order to obtain useful information
from the multirelational database, the identification of large patterns is often necessary.
Unfortunately, this need to unveil large patterns might involve a large computational
effort.

Embedded patterns are typically smaller than the induced patterns required to rep-
resent the same kind of information. However, if we use embedded patterns, some
of the relationships among the nodes in the original trees are not preserved. In other
words, we might not be able to rebuild the original tree structure from an embedded
tree pattern.

For example, Fig. 12 shows some patterns obtained from the object-based tree
representation scheme of the multirelational database in Fig. 4. The induced pattern
shown on the left tells us that some people in our database have a Toyota and a sedan
car, while the induced pattern on the right tells us that people in our database have
a Toyota that is also a sedan car. The embedded pattern shown in the same figure
illustrates that some people have a Toyota car and a sedan car, but we do not know if
it is the same car (a Toyota sedan) or they own two cars (a Toyota and a sedan car,
which is different from the Toyota). We cannot be sure of the original tree that led to
the discovered embedded pattern. In other words, embedded patterns can introduce
some ambiguity in their interpretation.

5.3 Key-based versus object-based patterns

The key-based and the object-based tree representation schemes also provide us dif-
ferent information about the multirelational database.

When we use the key-based representation scheme, no induced patterns with infor-
mation about the target table can be identified. Induced patterns might contain, how-
ever, information about tuples in other tables, those that are frequently related to the
tuples in the target table.

When we use the object-based representation scheme, induced patterns with infor-
mation about the target table can now be obtained. Therefore, the object-based rep-
resentation scheme is our only choice if we are interested in induced patterns, which
preserve the original structure of the trees in the database.

On the other hand, using the object-based representation scheme to discover embed-
ded patterns is useful only if we are interested in patterns that show that a particular
objectin a given relation is related to at least n objects in another relation. An example

@ Springer

Using trees to mine multirelational databases

person.car[idOwner] person.carf{idOwner] person.carfidOwner]

person.car[idOwner].type=sedan

person.car{idOwner].make=Toyota person.car{idOwner].type=sedan

person.car[idOwner].make=Toyota

person.car{idOwner].type=sedan

person.caridOwner].make=Toyota

Fig. 12 Embedded and induced patterns from the object-based tree representation of the multirelational
database in Fig. 5

of this kind of pattern is shown in Fig. 11b. That pattern indicates that people living in
suburbs with two cars (n = 2 in this example) are frequent in our database, without any
references to particular car features. This kind of pattern cannot be identified using the
key-based representation scheme, since all the nodes in a key-based tree necessarily
involve attribute values.

In the object-based representation scheme, however, the presence of intermediate
nodes increases the number of identified patterns and, therefore, the computational
effort needed to discover them. Hence, we should only resort to the object-based rep-
resentation scheme when we are interested in patterns similar to the one in Fig. 11b.
Otherwise, the key-based representation scheme provides faster results in the discov-
ery of embedded patterns.

5.4 Relationships between kinds of patterns

Once we have discussed the kind of patterns we can obtain using each representation
scheme, we will study the relationships between the different sets of patterns that we
can identify within a multirelational database.

First of all, we will define an equivalence relationship between key-based trees and
object based-trees when they represent the same information from a logical point of
view. Let prefix be a substring ¢y . . . t,,, of the string representing the label of a node
t...t, where m < n.

Definition 1 Equivalence between key-based and object-based trees.
We consider two scenarios to define the equivalence relationship between key-based
and object-based trees:

(a) When the relation r contains a foreign key that points to the relation s, which
might correspond to a one-to-many or a many-to-one relationship, we will say
that a key-based tree 7 =

prefix.F" = K*

@ Springer

A. Jiménez et al.

(b)

prefix.F".A] =aj 1
prefix . F".AS =a3 1 ...
prefix. F" A} =a) 11

n

is equivalent (=.4) to the object-based tree T3=

prefix.F"
prefix.F".K* =k% 1
prefix. F".A] =aj 1
prefix. F" Ay =a3 1 ...
prefix. F". A} = a) 11

When a foreign key in s points to », we will say that a key-based tree
T =

prefix.s[F*].K* = k°
prefix.s[F°l.A] = aj 1
prefix.s[F*1.AY =a5 1 ...
prefix.s[F°].A} = a) 11

n

is equivalent (=.4) to the object-based tree Ty=

prefix.s[F*]
prefix.s[F*1.KS =k ¢
prefix.s[F°l.A] = aj 1
prefix.s[F°lL.A =a; 1 ...
prefix.s[F°].A} = a) 11

n

Definition 2 Equivalence inclusion for sets of tree patterns.

We say that A C,, B if and only if, for each elementa € A, there exists an element

b € B suchthata =, b.

As we have seen before, we can identify four different sets of patterns using either

induced or embedded subtrees with both representation schemes: induced key-based
patterns (I K), embedded key-based patterns (EK), induced object-based patterns
(10), and embedded object-based patterns (E O). We can identify some relationships
among those four sets of patterns by using the following list of properties, whose
proofs can be found in the Appendix:

1.

2.

All induced key-based patterns are embedded key-based patterns, i.e.,

Induced key-based patterns € Embedded key-based patterns.

All induced object-based patterns belong to the set of embedded object-based
pattern, i.e.,

Induced object-based patterns € Embedded object-based patterns.

Every induced key-based pattern is equivalent to one pattern that belongs to the
set of induced object-based patterns, i.e.,

Induced key-based patterns C., Induced object-based patterns.

@ Springer

Using trees to mine multirelational databases

4. Every embedded key-based pattern is equivalent to one pattern that belongs to the
set of induced object-based patterns, i.e.,
Embedded key-based patterns C., Induced object-based patterns.

5. Every embedded key-based pattern is equivalent to one pattern that belongs to the
set of embedded object-based patterns., i.e.,
Embedded key-based patterns C., Embedded object-based patterns.

6. Every induced key-based pattern is equivalent to one pattern that belongs to the
set of embedded object-based patterns, i.e.,
Induced key-based patterns C., Embedded object-based patterns.

In short, we can summarize the relationships among induced key-based, embedded
key-based, induced object-based, and embedded object-based patterns as:

IK CEK Coy 10 CEO

6 Extracting association rules from tree patterns

An association rule is defined as follows for transactional databases: Let I =
i1,i2,..., 1, be a set of literals, called items. Let D be a set of transactions, where
each transaction T is a set of items such that 7 C . We say that a transaction T
contains X, a set of some items in /, if X € 7. An association rule is an implication
oftheform X = Y, where X C I,Y C I,and XNY = . Therule X = Y holds in
the transaction set D with confidence c if ¢% of transactions in D that contain X also
contain Y. The rule X = Y has support s in the transaction set D if s % of transactions
in D contain X U Y (Agrawal and Srikant 1994).

In multirelational databases, we define D as a set of trees. We say that a tree contains
X when X is a subtree of T'. Let P be a frequent pattern in D. An association rule in
a multirelational database is an implication of the form X = P, where X is a subtree
of P.

6.1 Tree rules

In this section, we explain how to obtain association rules from frequent tree pat-
terns. The kind of rules we obtain (and, therefore, the knowledge they provide us) will
depend on the kind of patterns we mine and the tree-based representation scheme we
choose, as we analyzed in Sects. 5.2 and 5.3.

In association rule mining, once all frequent itemsets are identified, we iterate
through all their subitemsets in order to enumerate all potentially-interesting associa-
tion rules. For each subitemset S of a frequent itemset / of size n,arule S = I — S
can be obtained.

When dealing with tree patterns, we have to enumerate all the subtrees of each
frequent tree pattern:

— If we are working with embedded patterns, its embedded subtrees can be obtained
by repeatedly removing nodes from the original pattern (all but the root node
because, if we removed the root node, we would break the tree).

@ Springer

A. Jiménez et al.

person.carfownerlD]
person.carfowner|D]

person.carfownerlD].make=Toyota
person.carfownerlD].make=Toyota

Fig. 13 Rule obtained from the second induced pattern in Fig. 12

person.car[onwerlD].type=sedan

— In the case of induced patterns, only leaf nodes can be removed in the process,
since we must guarantee that the resulting subtree is also induced.

It should be noted that, when working with tree patterns, we cannot represent rules
as in transactional databases (S = I — §) because:

— I — S may not be a tree (for example, when S includes the root node), and
— we may not know how to match the S subtree with the / — S subtree (in a similar
vein to our discussion on matching trees in Fig. 12a).

Therefore, we will represent the whole pattern / in the consequent of the associa-
tion rule, albeit its meaning is still analogous to / — S in the traditional sense, since
the presence of the pattern I involves the presence of the pattern / — S. This way, we
obtain rules where both the antecedent and the consequent are trees. Figure 13 shows
an example rule that can be obtained from the second induced pattern in Fig. 12.

6.2 Rule mining constraints

The number of rules that can be obtained from a multirelational database can be huge
and most of those rules might not be useful for the end user. In this section, we study
how to apply constraints (Pei and Han 2002) to tree rules in order to reduce the number
of rules to be considered.

6.2.1 Rule-specific constraints

Rule-specific constraints (Bayardo 2004) are based on the measures employed to deter-
mine the interestingness of an association rule, like confidence, lift, or certainty factor
(Berzal et al. 2002).

A threshold can be established for one or several of these interestingness measures
to reduce the number of resulting rules. This constraint lets us reject those rules that
do not reach the established thresholds during the rule generation process. Accepting
only those rules with confidence above 0.7 (i.e. 70%) is a typical example of this kind
of constraint.

@ Springer

Using trees to mine multirelational databases

6.2.2 Item constraints

An item constraint specifies which groups of items must be present (or not) in the
patterns we are looking for. They are typically used to prune the rules so that we
obtain only those rules that have a predefined attribute (or attribute value) in their
consequent. The use of these constraints in conjunction with length constraints, for
instance, is common in associative classification models (Berzal et al. 2004).

Item constraints can also be employed to prune the set of candidate patterns in
Apriori-based pattern mining algorithms. When we know which items must be pres-
ent in every pattern, we can discard the patterns that do not contain the required items
(Srikant et al. 1997).

When we apply item constraints at the end of the rule mining process, we can also
reduce the number of rules by specifying the items to be present in the antecedent or
the consequent of the rules. For example, in order to obtain rules involving the make
of a car from the multirelational database in Fig. 4, we could prune the rule set by con-
sidering only those rules that have the attribute person [ownerID] .car.make
in their consequent.

A special case of item constraints does not only consider one item but rather its rela-
tionships to other items: model-based constraints. These special constraints guide our
search for patterns that are sub or super-patterns of some given patterns. For instance,
in the database from Fig. 5, we could look for frequent patterns related to Toyota sedan
cars.

6.2.3 Length constraints

A length constraint specifies the number of items in the patterns. It can also be applied,
in a more restrictive way, by specifying the number of elements in the consequent of
the resulting rules. Length constraints can be useful, for instance, when association
rules are used for building classification models, where they should have a single
element in their consequent.

Maximum length constraints can be applied during the pattern mining phase to
reduce the number of generated patterns. Antecedent or consequent maximum length
constraints, however, can only be applied during the rule generation process.

7 Experimental results

In this section, we present some experimental results that we have obtained using
both the key-based and the object-based tree representations schemes. In these exper-
iments, we have used both synthetic and actual datasets to study the feasibility and
performance of our approach to multirelational database mining.

The synthetic datasets have been created using the database generator provided
by Yin at his web page: http://research.micro\discretionary-soft.com/en-us/people/
xyin/. The parameters of his generator are the number of relations in the database (),
the expected number of tuples in each relation (¢), and the expected number of foreign
keys in each relation (f). Given particular values for those parameters, the generator

@ Springer

http://research.microdiscretionary {-}{}{}soft.com/en-us/people/xyin/
http://research.microdiscretionary {-}{}{}soft.com/en-us/people/xyin/

A. Jiménez et al.

Interaction
mole moleatm —
f i PK | interactionID
PK | moleatmid
PK | mid < PK | genelD »

- ~ FK2 | genelD1
ind1 FK1 mld essential < FK1 | genelD2
inda FK2 | aid chromosome type
lumo A expr_corr
logp
label

composition
A 4 PK |complD
bond
I FK1 | genelD
PK | aid class
n — complex
FK1 | batm1 w elem a‘r:)e‘:';otype
FK2 | batm2 > type function
btype chargue localization

Fig. 14 Schemata of the mutagenesis (left) and genes (right) databases

produces a relation schema of r relations, one of them being the target relation. The
number of attributes in each relation obeys an exponential distribution whose expec-
tation is 5, with a minimum of 2 attributes. The number of different values for each
attribute obeys an exponential distribution whose expectation is 10, with a minimum of
two different attribute values. The number of foreign keys in each relation also obeys
an exponential distribution, with expectation f. Finally, the target relation has exactly
t tuples and the number of tuples in each nontarget relation obeys an exponential
distribution with expectation ¢ and a minimum of 50 tuples (Yin et al. 2004).

For the experiments with actual datasets, we have used three multirelational
databases: mutagenesis, loan, and genes. Figures 14 and 15 depict their sche-
mata.

The mutagenesis database (Srinivasan et al. 1994) is a frequently-used ILP
benchmark. It contains four relations and 15,218 tuples. The target relation (mole)
contains 188 tuples.

The 1oan database was used in the PKDD CUP’09. The database contains eight
relations with 75,982 tuples in total. The target relation (1oan) contains 400 tuples.

Themutagenesis and 1oan databases were adapted by Yin et al. for their exper-
iments with CrossMine (Yin et al. 2004) and can be downloaded from: http://research.
micro\discretionary-soft.com/en-us/people/xyin/.

The genes database was proposed in the KDD CUP’01. This database can be used
to predict the function of genes, thus we have chosen function as its class label for
our experiments. The target table in the genes database is composition, which
includes 4,636 tuples.

The original genes database contained only two relations called genes and
interaction, but the genes relation was not normalized, i.e., the table con-
tained 862 different genes but there were several rows in the table for some genes.
The normalization of the database was achieved, as proposed by Leiva et al. (2002),
by creating two tables as follows: attributes in the genes-relation table that
did not have unique values for each gene were placed in the composition table
and the rest of the attributes were placed in the gene table. The gene_id attri-
bute is the primary key in the gene table and a foreign key in the composition
table. The interaction relation has not changed with respect to the original one.

@ Springer

http://research.microdiscretionary {-}{}{}soft.com/en-us/people/xyin/
http://research.microdiscretionary {-}{}{}soft.com/en-us/people/xyin/

Using trees to mine multirelational databases

District Account Transaction
PK |district id PK |account id PK |trans id
<]
name FK1 | district_id FK1 | account_id
region frequency date
#people date type
#it-500 operation
#it-2000 A 4 A ammount
#it-10000 balance
#gt-10000 symbol
#eity
ratio-urban e
avg-salary
unemploy-95 PK |loan id
unemploy-96
den-enter FK1 | account_id
#crime95 date Order
#crime96 annount
4 duration PK |order id
payment
class label to_bank
Cient to_account
ammount
PK |client id type
FK1 | account_id
birthday
gender
FK1 | district_id
Disposition Card
PK |disp id PK |card id
client_id FK1 |disp_id
type ¢ type
FK1 | account_id issue_date

Fig. 15 Schema of the loan database

The difference between our normalization and the one proposed by Leiva et al. is that
we found that the attribute 1ocalization has two different values for the gene with
gene_1d=G239017. Therefore, we have placed this attribute in the composition
table instead of keeping it in the genes table.

Using the proposed tree-based representation schemes for multirelational databases,
tree databases can be obtained from each multirelational database. When the explora-
tion depth is 2, we obtain the following tree databases from the original multirelational
databases:

— The mutagenesis tree database contains 188 trees. Trees have an average of
163 nodes using the key-based representation scheme (30,674 nodes in total) and
an average of 189 nodes per tree using the object-based one (35,567 nodes in total).

— The tree database obtained from the 1 oan database contains 400 trees. Trees have
an average of 166 nodes using the key-based representation scheme (66,466 nodes
in total) and an average of 186 nodes using the object-based one (75,785 nodes in
total).

@ Springer

A. Jiménez et al.

100000 100000

FERCE m
10000 e

10000

1000 - 1000

100 A 100

#patterns
Time (ms)
<

10 A 10

1+ 1 T T T d

IK 10 EK EO 3 5 7 10

Fig. 16 Number of identified patterns (left) and POTMiner execution time (right) when varying the number
of relations in the synthetic database

— The tree dtabase obtained from the genes database contains 4,636 trees. Trees
have an average of 113 nodes using the key-based representation scheme (491,315
nodes in total) and an average of 127 nodes using the object-based one (555,192
nodes in total).

7.1 Identifying induced and embedded patterns

In this section, we present the experiments we have performed to identify frequent pat-
terns in both synthetic and actual databases. We have used the POTMiner tree pattern
mining algorithm (Jimenez et al. 2010b) to discover induced and embedded subtrees
from the tree-based representation of multirelational databases.

7.1.1 Identifying induced and embedded patterns in synthetic databases

In order to test the performance and scalability of our algorithm, we have performed
some series of experiments by varying the parameters of our algorithm (exploration
depth, minimum support, and maximum pattern size), as well as the parameters of the
synthetic multirelational databases themselves (i.e., number of relations, number of
tuples, and number of foreign keys). We have used the following base configuration:
#relations =35, #tuples =200, #foreign keys=1, exploration depth=2, support=10%,
and maxsize (maximum pattern size) =4.

For each experiment series, we graphically depict the number of identified patterns
(up to maxsize), both induced (I) and embedded (E), for each representation scheme,
i.e. key-based (K) and object-based (O). We also indicate POTMiner execution time
for each case. It should be noted that a logarithmic scale has been used for the Y -axis
in all the figures within this section.

First, we have performed some experiments by varying the number of relations:
four databases were created with 3, 5, 7, and 10 relations, respectively. Figure 16
shows the results obtained in these experiments. As it can be seen, the number of
identified patterns, as well as POTMiner execution time, is more or less independent
of the number of relations. The variation in the number of relations does not affect
POTMiner execution time because we are not changing the number of trees, which is
constant, nor their average size.

@ Springer

Using trees to mine multirelational databases

100000
H100 ©300 1000000
H200 400]
10000 100000
2 - 10000 -
£ 100 1 €
£ > 1000 g
S 100 A E
= = 100 v ——IK ——EK
10 4 10 W10 =S<E0
14 1 . ‘ .
IK 10 EK 3 100 200 300 400

Fig.17 Number of identified patterns (left) and POTMiner execution time (right) when varying the number
of tuples in the relations of the synthetic database

1000000 1000000
100000 100000 éﬁ
«w 10000 - 10000
g £ -
£ 1000 i 1000
= 2 —
& 100 = 100
= = =K ——EK
10 10 -B-10 —<EO0
1 4 1 T T
K 10 EK £0 1 2 3

Fig. 18 Number of identified patterns (left) and POTMiner execution time (right) when varying the number
of foreign keys in the relations of the synthetic database

We have also performed some experiments by varying the number of tuples in each
relation: four databases were created with 100, 200, 300, and 400 tuples, respectively.
As we increase the number of tuples, while keeping the number of attribute values
constant, the number of frequent patterns exponentially increases as shown in Fig. 17.
It should also be noted that the number of trees depends on the number of tuples in
the target relation of the multirelational database and POTMiner execution time is
asymptotically linear with respect to the number of trees in the tree database (Jimenez
et al. 2010b).

In our experiments varying the number of foreign keys in each relation, shown
in Fig. 18, three databases were created with 1, 2, and 3 expected foreign keys for
each relation. When increasing the number of foreign keys in each relation, tree size
increases and more patterns are identified. Then, as in a more traditional frequent
pattern mining setting, POTMiner time is proportional to the number of identified
patterns.

With respect to the parameters of our algorithm, we first vary the exploration depth
(see Sect. 4.1). We have generated four databases with exploration depths 1, 2, 3,
and 4. As shown in Fig. 19, the number of identified patterns increases exponentially
when we increase the exploration depth because the size of the trees is also increased
(we are including information about more relations within them). As in the previous
experiment involving the number of foreign keys, POTMiner execution time is pro-
portional to the number of examined patterns (and, hence, exponential with respect to
the exploration depth, since the number of patterns exponentially grows with respect
to the exploration depth).

@ Springer

A. Jiménez et al.

1000000 1000000

=l m2 =3 m4 /
100000 100000 /(/.
10000 A

) 10000 m
g £ /
£ 1000 P 1000 -
] £
2 = 100
* 100 Ll v ——IK —A—EK
10 10 —8-10 =¢EO
1 1 T T T)
1 2 3 4

Fig. 19 Number of identified patterns (left) and POTMiner execution time (right) when varying the explo-
ration depth in the synthetic database

1000000 1000000
02 m0.1 m0.05
100000 100000 —
@ 10000 - 10000 -
£ £
s 1000 o 1000
© £ >~— —
& 100 = 100
£ Ll ——IK —A—EK
10 10 —-10 9<E0
1 1 . . ,
IK 10 EK EO 0.2 0.1 0.05

Fig. 20 Number of identified patterns (/eft) and POTMiner execution time (right) when varying the mini-
mum support threshold for the frequent patterns in the synthetic database

1000000 10000000
H3 m4 w5 m6
100000 1000000 /
100000
@ 10000 -
< £ 10000 -
£ 1000 - -
T £ 1000 — —
3 100 4 i *
100 =—1K ——EK
10 10 —B-10 —<E0
14 1 : : ; s
IK 10 EK EO 3 4 5 6

Fig. 21 Number of identified patterns (/eft) and POTMiner execution time (right) when varying the max-
imum size of the identified patterns within the synthetic database

The results of our experiments varying the minimum support of frequent patterns
are shown in Fig. 20. We have extracted patterns using 20, 10, and 5% minimum
support thresholds. As expected, the number of identified patterns increases when the
support decreases and POTMiner execution time is proportional to the increase in the
number of identified patterns.

Finally, we have performed a series of experiments by varying the maximum size
of the identified patterns. Figure 21 shows the results of these experiments including
the number of patterns up to maxsize, which goes from 3 to 6. It should be noted
that, in the case of induced key-based patterns, no patterns of size greater than 1 were
identified. In the remaining cases, the number of identified patterns and, consequently,
POTMiner execution time exponentially increases with the pattern size.

@ Springer

Using trees to mine multirelational databases

POTMiner execution time is linear with respect to the number of trees in the data-
base and also proportional to the number of identified patterns (Jimenez et al. 2010b).
In the case of multirelational databases, the number of tuples in the target relation
determines the number of trees in the database, hence POTMiner is linear with respect
to the number of tuples in the target relation. Therefore, our algorithm is asymptotically
optimal for the problem of mining frequent patterns from multirelational databases
using tree-based representation schemes.

However, as in the classical frequent pattern mining problem, the number of iden-
tified patterns within a multirelational database can be exponential. The number of
foreign keys, the exploration depth, the minimum support threshold, and the maximum
pattern size can generate a combinatorial explosion in the number of frequent patterns.
Since POTMiner execution time is proportional to the number of identified patterns
(Jimenez et al. 2010b), our algorithm execution time can be exponential with respect
to the aforementioned parameters. Care should be taken while setting the right values
for those parameters in a real-world situation.

7.1.2 Identifying induced and embedded patterns in actual databases

In our experiments with three actual databases (mutagenesis, loan, and genes),
we have identified induced and embedded patterns including up to six nodes, i.e.,
maxsize = 6 in POTMiner.

Figure 22 shows the number of induced patterns discovered using different min-
imum support thresholds for the three datasets, each one obtained with exploration
depths 1, 2, and 3, for both the key-based (top) and the object-based (bottom) tree
representation schemes.

It should be noted that the number of key-based induced patterns is low and, in
most cases, only patterns of size 1 are identified. This is due to the use of primary
keys as internal nodes within the trees, which are rarely frequent, as we mentioned in
Sect. 5.3.

The number of embedded frequent patterns in the three databases is shown in Fig. 23.
The number of discovered patterns using the object-based tree representation scheme
is larger than the number of identified patterns using the key-based representation
scheme. This is mainly due to the use of intermediate nodes to represent each tuple
from the database and the fact that these intermediate nodes are usually frequent.

Figure 24 shows two patterns that have been identified in those databases. The
induced object-based pattern at the top is from the genes database: 21% of the genes
in this database are considered to be Non-Essential yet they are involved in Physical
interactions. The embedded object-based pattern at the bottom of Fig. 24 is from the
mutagenesis database: 47% of the molecules in this database include, at least,
three oxygen atoms (in this particular database, all chemical compounds include at
least two).

Figure 25 compares the time required to identify induced and embedded patterns
using the object-based representation scheme. As we explained in the previous section,
POTMiner execution time is proportional to the number of patterns that are examined
(Jimenez et al. 2010b). The discovery of induced patterns is faster than the discovery
of embedded patterns because there is a lower number of them. Likewise, mining

@ Springer

A. Jiménez et al.

1000000

6 m4m2
m5 m3m1
100000
10000
w
o
3
£ 1000
©
o
=
100 ¥
0 || il | II ”II
NN A NN A NM NN A NN AN M HAN O AN A NMmM
9238327 F90FEBINT FI2EEBIT
20% 10% 5%
100000
w6 m4 W2
m5 =3 W1
10000
w 1000
o
£
[
£
1]
Qo
= 100
10I 111 I I
o - - — -
s © pai © pai

Fig.22 Number of induced patterns using the key-based (fop) and the object-based (bottom) representation
schemes for the muta (M), loan (L), and genes (G) databases

object-based patterns requires more execution time because a greater number of pat-
terns is considered, as we analyzed in Sect. 5.2.

7.2 Extracting rules from frequent tree patterns

In these series of experiments, we have identified induced and embedded frequent pat-
terns of size 4 using both the key-based and the object-based representation schemes,
exploration depths from 1 to 3, and a 10% minimum support threshold. We have
then used those frequent patterns to extract association rules by varying the minimum
confidence threshold (using 0.7, 0.8, and 0.9 as threshold values).

@ Springer

Using trees to mine multirelational databases

1000000

m6 M4 H2
m5 m3 m1
100000
10000
w
f=S
3
£ 1000
©
o
=
100
ol I AL L | '
HTANM A NM A NmM HTANM A NM A NM HTANM A NM A NmM
S92EEPTNT JY0FEYSNT I BDan
20% 10% 5%
1000000
6 W4 m2
=5 =3 m1
100000
10000
w
f=4
£
£ 1000
]
Qo
=
100 I
10 Ii i i I i
3= S8zE88s =

Fig. 23 Number of embedded patterns using the key-based (fop) and the object-based (bottom) represen-
tation schemes for the muta (M), loan (L), and genes (G) databases

7.2.1 Extracting rules from frequent tree patterns in synthetic databases

In these experiments, we have used the patterns identified in the synthetic database
using the base configuration described in the previous section.

Figure 26 shows the number of discovered rules and highlights the rules involving
the class attribute in the target relation. We compare the number of rules that include
the class attribute in their consequent with respect to the total number of discovered
rules. The only class value shows the number of rules that have the class attri-
bute as their unique consequent with respect to the number of rules that include the
status attribute in their consequent but not necessarily alone. These constraints, as we

@ Springer

A. Jiménez et al.

mole.molatm[mid].aid.elem=0

composition.genelD.interaction[genelD2] >
composition.genelD.interaction[genelD2].type=Physical

composition.genelD

composition.genelD.Essential=Non-Essential

mole.molatm[mid].aid.elem=0

mole.molatm[mid].aid.elem=0

Fig. 24 Patterns identified in the genes (fop) and mutagenesis (bottom) databases

10000000
1000000
100000
10000 -+
1000 -+
100 +

10

Time (ms)

1 T

3 4
pattern size

=M1 =A=M3 =#=G2 ——L1 L3
~B-M2 =Gl -0-G3 —L2

Time (ms)

1000000
100000
10000
1000
100

10

1

2
A e re——X
—
T T T T T)
1 2 3 4 5 6
pattern size
=M1 —A=-M3 =¥=G2 L1 L3
~W-M2 =Gl -8-G3 ——L2

Fig. 25 POTMiner execution time for identifying induced (left) and embedded (right) patterns using the
object-based representation scheme for the muta (M), loan (L), and genes (G) databases

10000

1000 4
w
Y

S 100 4
S
i

10 -

1 4

s1 52 S3 s1 S2 s3 s1 52 S3
0.7 0.8 0.9

mall

M class ®only class

#trules

100000

10000

1000 -

100 +

10 ¢

S1 S2 S3 S1 S2 S3 S1 S2 S3

0.7 0.8 0.9
mall mclass W only class

Fig. 26 Number of association rules from the synthetic database using induced object-based patterns (left)
and embedded key-based patterns (right) with different minimum confidence thresholds

explained in Sect. 6.2, are useful when we use association rules to build classification

models.

The number of rules obtained from induced patterns in the object-based represen-
tation is similar for all the exploration depths in the synthetic datasets. Since induced
patterns preserve the original structure of the database trees, the discovered patterns
of size 4 are more or less the same regardless of the chosen exploration depth and,

@ Springer

Using trees to mine multirelational databases

therefore, the resulting rules are also similar. No rules were obtained from induced
key-based patterns because all of them were of size 1. More rules were obtained from
embedded patterns than from induced patterns, since embedded patterns are a superset
of induced patterns.

Albeit not shown in the figures, it should be noted that, once the frequent patterns
are identified, the process of extracting rules from them is very fast, just a few seconds
for a complete multirelational database.

7.2.2 Extracting rules from frequent tree patterns in actual databases

In our experiments with actual datasets, we have extracted rules from the muta-
genesis, loan, and genes databases. We have considered 1abel, status, and
function, respectively, as their class attribute.

Figure 27 shows the number of rules resulting from the induced object-based pat-
terns and the embedded key-based patterns derived from the actual databases. Albeit
not shown in the figure, as happened with the synthetic datasets, no rules were obtained
from the induced key-based patterns for the mutagenesis and genes databases
because no pattern of size greater than 1 was obtained (see Sect. 7.1). Only a few rules,
which did not contain the class attribute, were obtained from the induced key-based
representation of the 1oan database.

Figure 28a depicts one rule obtained from induced object-based patterns in the
loan database. This rule, with 65% support and 82% confidence, can be interpreted
as: “If we have a 1oan whose associated account has a monthly frequency of
issuance of statements, then the 1oan usually has no problems (i.e. status=1)".In
other words, of all the loans in our database that have an associated account with a
monthly frequency of issuance of statements, 82% of them have no problems.

Rules derived from embedded patterns provide information that cannot be obtained
from the induced patterns. For instance, Fig. 28b shows a rule from the embedded
key-based patterns in the 1oan database. This rule, with 20% support and 82% confi-
dence, states that “if we have a 1oan whose account has a permanent order
of house type and its district has one municipality with more than 10000 inhabitants
(num_gt_10000 = 1), then the 1oan usually has no problems (status=1)".
Hence, it is less frequent in our database to find loans without problems associ-
ated to accounts in a district with more than 10,000 inhabitants with a permanent
order of house type than loans without problems that have an associated account
with monthly frequency. However, our confidence about not having problems with
those loans is the same in both situations.

The number of association rules from object-based patterns is 3—10 times higher
than the number of rules derived from key-based patterns. Since, every embedded
key-based pattern has an equivalent embedded object-based pattern, as discussed in
Sect. 5.4, all embedded key-based rules have their counterpart in the set of embedded
object-based rules. Therefore, a rule equivalent to the rule in Fig. 28b will be found
in the set of embedded object-based rules.

Object-based rules will be specially useful if we are interested in the kind of knowl-
edge we described with the example in Fig. 11 from Sect. 5.1.3. In our experiments,
we have obtained a similar rule from the 1 oan database, as shown in Fig. 28c: “Within

@ Springer

A. Jiménez et al.

10000
1000
w
4]
S 100 1 1 1
S
) | |
. | i I i
AN A ANMm A NMmM AN AN A NMmM AN EH NN A NmM
S 24ssso0o0u0 d9ssSss000 JdSsSs5000
0.7 0.8 0.9
mall mclass monly class
100000
10000 I I
1000
w
9
S
#
100
NINIRIEIRIRIENALE
1|. |I‘v .I|y..|. .I,,.I,,.,I, .I...I.|.
AN AN A NM AN NN A NM NN A NM
- “s==000 -3z 000 - “3s=z000
0.7 0.8 0.9

mall mclass Monly class

Fig. 27 Number of association rules from the mutagenesis, loan, and genes databases using induced
object-based patterns (fop) and embedded key-based patterns (bottom) with different minimum confidence
thresholds

the set of accounts with an associated 1oan and two orders, 83% of them have
amonthly frequency of issuance of statements” (support=67%, confidence=83%).

8 Conclusions

This paper proposes a new approach to mine multirelational databases. Our approach
is based on representing multirelational databases as sets of trees.

We have designed two alternative tree representation schemes for multirelational
databases. The main idea behind both of them is building a tree representing each
tuple in the target table (i.e., the most interesting table for the user) by following the
foreign keys that connect tables in the relational databases.

@ Springer

Using trees to mine multirelational databases

(c)

Fig. 28 Some rules obtained during our experiments

The key-based representation scheme uses primary keys at the roots of the sub-
trees representing each tuple. In contrast, the object-based representation scheme uses
generic intermediate nodes to include new tuples in the trees.

We have identified frequent patterns in the trees derived from multirelational dat-
abases and we have studied the differences that arise from identifying induced or
embedded patterns in both the key-based and the object-based representation schemes.
As we explain in Sect. 5.4 and prove in the appendix, every key-based pattern is equiv-
alent to a pattern that belongs to the set of object-based patterns.

We have also described how tree patterns can be employed to discover association
rules from multirelational databases. The performance of this rule mining process can
be improved by the use of constraints, which are also useful for reducing the number
of rules that are returned to the user.

Our experiments with synthetic and actual datasets show that our approach is fea-
sible in practice, since it can rest on our previous tree pattern mining algorithm, POT-
Miner, which is linear with respect to the number of trees in the database and whose
execution time is proportional to the number of examined patterns, an asymptotically
optimal solution for the frequent tree pattern mining problem.

The discovery of induced patterns combined with the object-based representation
scheme is often enough to mine multirelational databases. Embedded patterns, when
used with the key-based representation scheme, let us reach data that is farther from

@ Springer

A. Jiménez et al.

the target relation, although such patterns do not always preserve the structure of the
original database trees and can introduce some ambiguities in their interpretation.
Embedded object-based patterns, the most general case we have studied, can discover
situations where the number of related tuples is important, regardless of their particular
attribute values.

Acknowledgments We would like to thank the anonymous referees for their valuable comments and
suggestions, which gave us the chance to improve the quality of this manuscript. This work has been
partially supported by research projects TIN2006-07262 (Spanish Ministry of Science and Innovation),
TIN2009-08296 (Spanish Ministry of Science and Innovation), and PO7-TIC-03175 (Junta de Andalucia).

Appendix: Relationships between kinds of patterns

Property 1 All induced key-based patterns are embedded key-based patterns, i.e.,
Induced key-based patterns C Embedded key-based patterns.

Proof (a) Vp € IK = p € EK. By definition, an induced pattern is an embed-
ded pattern where all the parent—children relationships are preserved. Therefore,
VpelK,pe EK,ie.,IK C EK.

(b) For patterns of size < 2, EK = [K. All key-based patterns of size < 2 have
to preserve their only parent—children relationship, when it exists. Therefore
Vg € EK of size(q) <2,q € IK,ie., EK = IK.

(c) For patterns of size > 2, EK ¢ IK.Let g € EK be an embedded key-based
pattern that does not preserve all the parent—children relationships. Then,q € EK
butg & I K. Therefore,q € EK # q € 1K. Hence, EK ¢ IK.

Therefore, IK € EK. O

Property 2 All induced object-based patterns belong to the set of embedded object-
based pattern, i.e.,
Induced object-based patterns C Embedded object-based patterns.

Proof Analogous to the proof of Property 1. Therefore, /O € EO. O

Property 3 Every induced key-based pattern is equivalent to one pattern that belongs
to the set of induced object-based patterns, i.e.,
Induced key-based patterns C., Induced object-based patterns.

Proof (a) IK C 10:Vp € IK = 3p’ € 10,p =, p’. By induction on the

number of foreign keys in the tree:
1. Suppose that the pattern p does not contain any foreign keys, i.e., #F K (p) =

0. Then, p € IK is of the form

r
r.K"=k"
rAy=aj 1 ...
rAL =a, M1 ...

and p’ € 10 is of the form

@ Springer

Using trees to mine multirelational databases

rK'=k" 1
RAY=a] ...
rAl =a, 11 ...

Therefore, by Definition 1, p =., p’.

2. Suppose that ¢ € I K contains k foreign keys, i.e., #F K(q) = k, and 3¢’ €
10,q =¢q q'. Let g be a subtree of p, which contains k + 1 foreign keys;
ie., #F K (p) = k + 1. Then, we have to consider two scenarios depending
on the kind of foreign key added to ¢ in order to obtain the pattern p.

(a) If the foreign key is in the relation r pointing to another relation s, then
a subtree of the form 77 will be added to a node with label prefix in g
in order to generate the pattern p. Let p’ € 10O be a pattern generated
by adding a subtree with the form of 73 to the pattern ¢ at the node
with label prefix. As Ti =¢q T3, q =cq q', and T} is attached to ¢ at
the same node where 73 is attached to ¢’, we have p =., p’.

(b) If the foreign key is in the relation s pointing to our relation, then a tree
of the form 7> will be added to a node with label prefix in g in order
to generate the pattern p. Let p’ € I O be a pattern generated by adding
a subtree with the form of Ty to the pattern ¢ at the node with label
prefix. As Tr =¢y T4, q = q’, and T is attached to ¢ at the same
node where 74 is attached to ¢’, we have p =, p’.

Therefore, Vp € IK,3p’ € 10, p =¢4 p'. Hence, IK C 10.

(b) 10 ¢eq 1K. As a counterexample, the special object-based patterns that let
us know how many tuples are related to a given one cannot be identified
using the key-based representation (as the example shown in Fig. 11a). Hence,
10 ¢ IK.

Therefore, IK Cey 10. |

Property 4 Every embedded key-based pattern is equivalent to one pattern that
belongs to the set of induced object-based patterns, i.e.,
Embedded key-based patterns C., Induced object-based patterns.

Proof (a) EK C10:Vpe EK =3p' €10,p=¢ p'.
By induction on the number of foreign keys in the tree:
1. Suppose that the pattern p does not contain any foreign keys, i.e., #F K (p) =
0. Then, p € EK is of the form

,
r.K" =k"
rAy=a; 1 ...
rAT =a’ 111 ...

and p’ € 10 is of the form

,
rK"=k" 1

@ Springer

A. Jiménez et al.

Therefore, by Definition 1, p =, p’.

2. Suppose that ¢ € EK contains k foreign keys, i.e., # K(gq) = k, and
39" € 10,9 =4 q'. Let g be a subtree of p, which contains k + 1 for-
eign keys, i.e., #F K (p) = k + 1. Then, we have to consider two scenarios
depending on the kind of foreign key added to g in order to obtain the pattern
p. Furthermore, as p is an embedded pattern, we have to consider whether
the subtree f corresponding to the foreign key conserves its root node or
note.
— If the foreign key is in the relation r pointing to another relation s.

(a)

(b)

When the subtree f conserves its root node in p (i.e., the node
prefix.Arg = k%), then f is of the form T; and it will be added to
anode with label prefix in g to generate the pattern p. Let p’ € 10
be a pattern generated by adding a subtree with the form of 73 to the
pattern ¢’ at the node with the label prefix. As Ty =¢y T3, q =eq
q', and T is attached to g at the same node that T3 is attached to ¢/,
then p =4 p'.
When the subtree f has no root node in p (i.e., we add only some
leaf nodes with their attribute values), then:

prefix. F'.A{ =aj 1

prefix. F". A5 =aj 1 ...

prefix. F" Ay = a, 11

are the nodes that have been added as children to the node with the
label prefix in g to form p. Then, if we add the same leaf nodes
as children to the node with label prefix in g’, we will obtain a
pattern p’ € 0. Therefore, p =.4 p'.

— If the foreign key is in the relation s pointing to the relation r:

@ Springer

(a)

(b)

When the subtree f conserves its root node in p (i.e., the node
prefix.s[F*].K* = k%), then f is of the form 7> and it will be
added to a node with label prefix in g to generate the pattern p.
Let p’ € 10 be a pattern generated by adding a subtree with the
form of Ty to the pattern ¢’ at the node with the label prefix. As
T =eq Ta, q =eq q’, and T is attached to ¢ at the same node that
Ty is attached to ¢’, then p =, p'.
When the subtree f has no root node in p (i.e., we add only some
leaf nodes with their attribute values), then:

prefix.s[F°l.A] =aj 1

prefix.s[F°l.AS =aj 1 ...

prefix.s[F°]l.A} = a; 11

are the nodes that have been added as children to the node with the
label prefix in g to form p. Then, if we add the same leaf nodes

Using trees to mine multirelational databases

as children to the node with the label prefix in g, we will obtain
apattern p’ € 10. Therefore, p =4 p’.
Hence,Vp € EK,3p' € 10, p =¢4 p'. Therefore, EK C 10.

(b) 10 ¢.; EK: As a counterexample, the induced object-based patterns that
let us know how many tuples are related to a given one cannot be identified
using the key-based representation (as the example shown in Fig. 11a). Hence,
10 ¢., EK.

Therefore, EK Ceq 10. |

Property 5 Every embedded key-based pattern is equivalent to one pattern that
belongs to the set of embedded object-based patterns., i.e.,
Embedded key-based patterns C., Embedded object-based patterns.

Proof (a) EK C.; EO: We have proved that EK C,,; 10 in Property 4 and that
10 < EO in Property 2. Therefore, EK C., 10 € EO. By transitivity,
EK C.q EO.

(b) EO ¢.; EK: As a counterexample, the embedded object-based patterns that
let us know how many tuples are related to a given one cannot be identified
using the key-based representation (as the example shown in Fig. 11b). Hence,
EO ¢.4 EK.

Therefore, EK C.qy EO. O

Property 6 Everyinduced key-based pattern is equivalent to one pattern that belongs
to the set of embedded object-based patterns, i.e.,
Induced key-based patterns C., Embedded object-based patterns.

Proof (a) IK C.q EO: We have proved that /O € EO in Property 2 and also
that /K C.q4 10 in Property 3. Therefore, IK C.4, 10 C EO. By transitivity,
IK C.y EO.

(b) EO ey IK: As a counterexample, the embedded object-based patterns that
let us know how many tuples are related to a given one cannot be identified
using the key-based representation (as the example shown in Fig. 11b). Hence,
EO ¢, IK.

Therefore, IK C.q EO. O

References

Abe K, Kawasoe S, Asai T, Arimura H, Arikawa S (2002) Efficient substructure discovery from large
semi-structured data. In: Proceedings of the 2nd SIAM international conference on data mining, pp
158-174

Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: Proceedings
of the 20th international conference on very large data bases, 12—15 Sept, pp 487-499

Bayardo RJ (2004) The hows, whys, and whens of constraints in itemset and rule discovery. In: Constraint-
based mining and inductive databases, lecture notes in artificial intelligence, pp 1-13

Berzal F, Blanco I, Sdnchez D, Vila MA (2002) Measuring the accuracy and interest of association rules:
a new framework. Intell Data Anal 6(3):221-235

@ Springer

A. Jiménez et al.

Berzal F, Cubero JC, Sdnchez D, Serrano JM (2004) ART: a hybrid classification model. Mach Learn
54(1):67-92

Blockeel H, Raedt LD (1998) Top-down induction of first-order logical decision trees. Artif Intell 101
(1-2):285-297

Booch G, Rumbaugh J, Jacobson I (2005) The unified modeling language user guide, 2nd edn. Addison-
Wesley Professional, New York

Chi Y, Yang Y, Muntz RR (2003) Indexing and mining free trees. In: Proceedings of the 3rd IEEE interna-
tional conference on data mining, pp 509-512

Chi Y, Muntz RR, Nijssen S, Kok JN (2005) Frequent subtree mining—an overview. Fundam Inform
66(1-2):161-198

Codd EF (1990) The relational model for database management, version 2. Addison-Wesley, New York

De Knijf J (2006) FAT-miner: mining frequent attribute trees. Tech. Rep. UU-CS-2006-053, Department of
Information and Computing Sciences, Utrecht University

De Knijf J (2007) FAT-miner: mining frequent attribute trees. In: Proceedings of the 2007 ACM symposium
on applied computing. ACM, New York, pp 417-422

Dzeroski S (2003) Multi-relational data mining: an introduction. SIGKDD Explor Newsl 5(1):1-16

Fagin R, Mendelzon AO, Ullman JD (1982) A simplied universal relation assumption and its properties.
ACM Trans Database Syst 7:343-360

Garcia-Molina H, Ullman JD, Widom J (2008) Database systems: the complete book. Pearson Education,
Boston

HanlJ,Peil, Yin Y, Mao R (2004) Mining frequent patterns without candidate generation: a frequent-pattern
tree approach. Data Min Knowl Discov 8(1):53-87

Jimenez A, Berzal F, Cubero JC (2010a) Frequent tree pattern mining: a survey. Intell Data Anal 14(6):603—
622

Jimenez A, Berzal F, Cubero JC (2010b) POTMiner: mining ordered, unordered, and partially-ordered
trees. Knowl Inform Syst 23(2):199-224

King RD, Srinivasan A, Dehaspe L (2001) Warmr: a data mining tool for chemical data.] Comput-Aided
Mol Des 15(2):173-181

Krogel MA, Wrobel S (2003) Facets of aggregation approaches to propositionalization. In: Horvath T,
Yamamoto A (eds) Work-in-progress track at the thirteenth international conference on inductive
logic programming

Lee AJT, Wang CS (2007) An efficient algorithm for mining frequent inter-transaction patterns. Inform Sci
177(17):3453-3476

Leiva HA, Gadia S, Dobbs D (2002) MRDTL: a multi-relational decision tree learning algorithm. In:
Proceedings of the 13th international conference on inductive logic programming. Springer-Verlag,
pp 38-56

Maier D, Ullman JD (1983) Maximal objects and the semantics of universal relation databases. ACM Trans
Database Syst 8:1-14

Maier D, Ullman JD, Vardi MY (1984) On the foundations of the universal relation model. ACM Trans
Database Syst 9:283-308

McGovern A, Hiers NC, Collier M, II DJG, Brown RA (2008) Spatiotemporal relational probability trees: an
introduction. In: Proceedings of the 8th IEEE international conference on data mining. IEEE Computer
Society, pp 935-940

Neville J, Jensen D, Friedland L, Hay M (2003) Learning relational probability trees. In: Proceedings of the
9th ACM SIGKDD international conference on knowledge discovery and data mining, pp 625-630

Paterson J, Edlich S, Horning H, Horning R (2006) The definitive guide to db4o. Apress, New York

Pei J, Han J (2002) Constrained frequent pattern mining: a pattern-growth view. SIGKDD Explor Newsl
4(1):31-39

Perlich C, Provost F (2006) Distribution-based aggregation for relational learning with identifier attributes.
Mach Learn 62:65-105

Silberschatz A, Korth HF, Sudarshan S (2001) Database systems concepts. McGraw-Hill, New York

Srikant R, Vu Q, Agrawal R (1997) Mining association rules with item constraints. In: Proceedings of the
3rd international conference of knowledge discovery and data mining, pp 63-73

Srinivasan A, Muggleton SH, King R, Sternberg M (1994) Mutagenesis: ILP experiments in a non-
determinate biological domain. In: Proceedings of the 4th international workshop on inductive logic
programming, vol 237 of GMD-Studien, pp 217-232

@ Springer

Using trees to mine multirelational databases

Tung AKH, Lu H, Han J, Feng L (2003) Efficient mining of intertransaction association rules. IEEE Trans
Knowl Data Eng 15(1):43-56

Turmeaux T, Salleb A, Vrain C, Cassard D (2003) Learning characteristic rules relying on quantified paths.
In: Proceedings of the 7th European conference on principles and practice of knowledge discovery in
databases, pp 471-482

Ullman JD (1988) Principles of database and knowledge-base systems, vol I: classical database systems.
Computer Science Press Inc., New York

Ullman JD (1990) Principles of database and knowledge-base systems, vol II: the new technologies. W. H.
Freeman & Co., New York

Wang C, Hong M, Pei J, Zhou H, Wang W, Shi B (2004) Efficient pattern-growth methods for frequent tree
pattern mining. In: Proceedings of the 8th Pacific-Asia conference on knowledge discovery and data
mining. Lecture Notes in Computer Science, vol 3056, Springer, pp 441-451

Xiao Y, Yao JF, Li Z, Dunham MH (2003) Efficient data mining for maximal frequent subtrees. In:
Proceedings of the 3rd IEEE international conference on data mining, pp 379-386

Yin X, Han J, Yang J, Yu PS (2004) CrossMine: efficient classification across multiple database relations.
In: Proceedings of the 20th international conference on data engineering, pp 399-410

Yin X, Han J, Yu PS (2005) Cross-relational clustering with user’s guidance. In: Proceedings of the 12th
international conference on knowledge discovery and data mining, pp 344-353

Zaki MJ (2005a) Efficiently mining frequent embedded unordered trees. Fundam Inform 66(1-2):33-52

Zaki MJ (2005b) Efficiently mining frequent trees in a forest: algorithms and applications. IEEE Trans
Knowl Data Eng 17(8):1021-1035

@ Springer

	Using trees to mine multirelational databases
	Abstract
	1 Introduction
	2 Background
	2.1 Tree pattern mining
	2.2 Multirelational data mining

	3 Multirelational database tree representation
	3.1 Key-based tree representation
	3.2 Object-based tree representation

	4 Deriving trees from a multirelational database
	4.1 Exploration depth
	4.2 Relationship traversal

	5 Identifying frequent patterns in multirelational databases
	5.1 Identifying different kinds of patterns
	5.1.1 Induced key-based patterns
	5.1.2 Embedded key-based patterns
	5.1.3 Induced object-based patterns
	5.1.4 Embedded object-based patterns

	5.2 Induced versus embedded patterns
	5.3 Key-based versus object-based patterns
	5.4 Relationships between kinds of patterns

	6 Extracting association rules from tree patterns
	6.1 Tree rules
	6.2 Rule mining constraints
	6.2.1 Rule-specific constraints
	6.2.2 Item constraints
	6.2.3 Length constraints

	7 Experimental results
	7.1 Identifying induced and embedded patterns
	7.1.1 Identifying induced and embedded patterns in synthetic databases
	7.1.2 Identifying induced and embedded patterns in actual databases

	7.2 Extracting rules from frequent tree patterns
	7.2.1 Extracting rules from frequent tree patterns in synthetic databases
	7.2.2 Extracting rules from frequent tree patterns in actual databases

	8 Conclusions
	Acknowledgments
	Appendix: Relationships between kinds of patterns
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

