
Knowl Inf Syst (2010) 23:199–224
DOI 10.1007/s10115-009-0213-3

REGULAR PAPER

POTMiner: mining ordered, unordered,
and partially-ordered trees

Aída Jiménez · Fernando Berzal · Juan-Carlos Cubero

Received: 12 September 2008 / Revised: 20 February 2009 / Accepted: 20 April 2009 /
Published online: 3 June 2009
© Springer-Verlag London Limited 2009

Abstract Non-linear data structures are becoming more and more common in data mining
problems. Trees, in particular, are amenable to efficient mining techniques. In this paper, we
introduce a scalable and parallelizable algorithm to mine partially-ordered trees. Our algo-
rithm, POTMiner, is able to identify both induced and embedded subtrees in such trees. As
special cases, it can also handle both completely ordered and completely unordered trees.

Keywords Data mining · Frequent patterns · Partially-ordered trees ·
Induced and embedded subtrees

1 Introduction

Some data mining problems are best represented with non-linear data structures like trees.
Trees appear in many different problem domains, ranging from the Web and XML documents
to bioinformatics and computer networks.

The aim of this paper is to introduce a new algorithm, POTMiner, that is able to identify
frequent patterns in partially-ordered trees, a particular kind of tree that appears in several
problems domains. However, existing tree mining algorithms cannot be directly applied to
this important kind of tree because they work either with completely-ordered or with com-
pletely-unordered trees.
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For instance, POTMiner can be applied to XML documents, whose hierarchical structure
can be viewed as a tree. Furthermore, XML schemata define the structure of XML documents
and they determine which sets of nodes in the trees correspond to ordered data and which
ones correspond to unordered data.

As another example, POTMiner can also be used in software mining when we represent
the structure of a software program as a hierarchy. In such hierarchies, program segments can
be represented as nodes within trees. Existing dependences between program segments can
be made explicit as order relationships among tree nodes. The resulting trees are, therefore,
partially-ordered trees.

In a more typical data mining scenario, POTMiner can be used to improve existing multi-
relational techniques. We can build a tree from each tuple in a particular relation by following
foreign keys in order to collect all the data that are related to the original tuple, even when
they are stored in different relations.

This paper is organized as follows. We introduce the idea of partially-ordered trees as well
as some standard terms in Sect. 2. Our algorithm is presented in Sect. 3. In Sects. 4 and 5 we
explain the details of the two main phases of our algorithm, candidate generation and support
counting, respectively. Section 6 shows, by means of a particular example, how POTMiner
deals with partially-ordered trees. We discuss some implementation issues that are particu-
larly relevant in practice and how we have dealt with them in Sect. 7, while we analyze the
experimental results we have obtained in Sect. 8. Finally, we present some conclusions and
provide pointers to future work in Sect. 9.

2 Background

We will first review some basic concepts related to labeled trees before we formally define
the tree pattern mining problem we address in this paper.

2.1 Trees

A tree is a connected and acyclic graph. A tree is rooted if its edges are directed and a special
node, called root, can then be identified. The root is the node from which it is possible to
reach all the other nodes in the tree. In contrast, a tree is said to be free if its edges have no
direction, that is, when it is an undirected graph. A free tree, therefore, has no predefined root.

Rooted trees can be classified as ordered trees, when there is a predefined order within
each set of sibling nodes in the tree, or unordered trees, when there is no such a predefined
order among sibling nodes in the tree.

In this paper, we consider partially-ordered trees, which contain both ordered and unor-
dered sets of sibling nodes in the same tree. They can be useful when the order within some
sets of siblings is important but it is not necessary to establish an order relationship within
all the sets of sibling nodes.

Figure 1 shows an example with different kinds of rooted trees. In this figure, ordered
sibling nodes are joined by an arc, while unordered sets of sibling nodes do not share such
arc.

2.2 Tree representation

A canonical tree representation is an unique way of representing a labeled tree. This canonical
representation makes the problems of tree comparison and subtree enumeration easier. We
now proceed to describe the most common canonical tree representation schemes.
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Fig. 1 Different kinds of rooted trees (from left to right): a completely-ordered tree, b, c partially-ordered
trees, d completely-unordered tree

Three alternatives have been proposed in the literature [9,12] to represent trees as strings:

• Depth-first codification: The string representing the tree is built by adding the label of
each tree node in a depth-first order. A special symbol ↑, which is not in the label alphabet,
is used when the sequence comes back from a child to its parent.

• Breadth-first codification: Using this codification scheme, the string is obtained by tra-
versing the tree in a breadth-first order, i.e., level by level. Again, we need an additional
symbol $, which is not in the label alphabet, in order to separate sibling families.

• Depth-sequence-based codification: This codification scheme is also based on a depth-
first traversal of the tree, but it explicitly stores the depth of each node within the tree.
The resulting string, known as depth sequence, is built with (d, l) pairs where the first
element, d , is the depth of the node in the tree and the second one, l, is the node label.

In our algorithm, we resort to a depth-first codification to represent the trees. For instance,
the depth-first codification of the ordered tree shown in Fig. 1a is AC B↑A↑↑B↑. The par-
tially-ordered tree in Fig. 1b, however, could be represented as either C B↑AB↑C↑↑ or
C B↑AC↑B↑↑. This example shows that, when a tree contains unordered sets of sibling
nodes, different representation strings are possible. The smallest string according to the lexi-
cographical order is chosen as the canonical representation of the tree, where ↑ is considered
to be larger than all the symbols in the label alphabet. Therefore, C B↑AB↑C↑↑ is chosen
as the canonical representation of the tree in Fig. 1b. Likewise, AB↑CC↑A↑↑ is the canon-
ical representation of partially-ordered tree in Fig. 1c and C A↑B A↑C↑↑ is the canonical
representation of the unordered tree in Fig. 1d.

2.3 Tree patterns

A subtree is a subgraph of a tree. Different kinds of subtrees can be defined depending on
the way we define the matching function between the subgraph and the tree it derives from:

• A bottom-up subtree T ′ of T (with root v) can be obtained by taking one vertex v from
T with all its descendants and their corresponding edges.

• An induced subtree T ′ can be obtained from a tree T by repeatedly removing leaf nodes
from a bottom-up subtree of T .

• An embedded subtree T ′ can be obtained from a tree T by repeatedly removing nodes,
provided that ancestor relationships among the vertices of T are not broken.

Figure 2 shows a tree (a) wherein we have identified a bottom-up subtree (b), an induced
subtree (c) and an embedded subtree (d).
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Fig. 2 Different kinds of subtrees (from left to right): a original tree, b bottom-up subtree, c induced subtree,
d embedded subtree

2.4 The tree pattern mining problem

The goal of frequent tree pattern mining is the discovery of all the frequent subtrees in a large
database of trees D, also referred to as forest, or in a unique large tree.

Let δT (S) be the occurrence count of a subtree S in a tree T and dT a variable such
that dT (S) = 0 if δT (S) = 0 and dT (S) = 1 if δT (S) > 0. We define the support of a
subtree as σ(S) = ∑

T ∈D dT (S), i.e, the number of trees in D that include at least one
occurrence of the subtree S. Analogously, the weighted support of a subtree is defined as
σw(S) = ∑

T ∈D δT (S), i.e., the total number of occurrences of S within all the trees in D.
We say that a subtree S is frequent if its support is greater than or equal to a predefined
minimum support threshold. We define Lk as the set of all frequent k-subtrees (i.e., subtrees
of size k).

2.5 Tree mining algorithms

Several frequent tree pattern mining algorithms have been proposed in the literature. Tables 1
and 2 summarize some of them. Table 1 indicates the kinds of input trees they can be applied
to (ordered, unordered, or free), while Table 2 shows the kinds of subtrees they are able to
identify (induced or embedded).

These algorithms are mainly derived from two well-known frequent pattern mining algo-
rithms: Apriori [4] and FP-Growth [16].

Most of the algorithms in Tables 1 and 2 follow the Apriori iterative pattern mining strategy
[4], where each iteration is broken up into two distinct phases:

• Candidate generation: A candidate is a potentially frequent subtree. In Apriori-like algo-
rithms, candidates are generated from the frequent patterns discovered in the previous
iteration. Most algorithms generate candidates of size k + 1 by merging two patterns of
size k having k − 1 elements in common. The most common strategies to generate such
candidates are the following:

• Rightmost expansion generates subtrees of size k + 1 from frequent subtrees of size
k by adding nodes only to the rightmost branch of the tree. This technique is used in
algorithms like FREQT [1], uFreqt [19], and UNOT [5].

• The equivalence class-based extension technique generates a candidate (k + 1)-sub-
tree by joining two frequent k-subtrees with (k − 1) nodes in common and that share
a (k − 1)-prefix in their string codification. This extension mechanism is used, for
instance, in Zaki’s TreeMiner [36] and SLEUTH [35] algorithms.
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Table 1 Some frequent tree mining algorithms classified by the kind of input trees they can be applied to

Algorithm Ordered Unordered Free
trees trees trees

FreqT [1] •
AMIOT [17] •
uFreqT [19] •
HybridTreeMiner [11] • •
FreeTreeMiner [12] • •
FreeTreeMiner’ [22] • •
X3Miner [25] •
MB3Miner [26] •
IMB3Miner [27] •
TreeMiner [36] •
TreeMinerD [36] •
RETRO [7] •
Chopper [31] •
XSpanner [31] •
Uni3 [15] •
Unot [5] •
GASTON [20] •
Phylominer [37] •
SLEUTH [35] •
TRIPS [28] • •
TIDES [28] • •
CMTreeMiner [10] • •
PathJoin [32] •
DRYADE [30] •
TreeFinder [29] •

• The right-and-left tree join method, which was proposed with the AMIOT algorithm
[17], considers both the rightmost and the leftmost leaves of a tree in the generation
of candidates.

• Finally, the extension and join technique defines two extension mechanisms and a join
operation to generate candidates. This method is used by HybridTreeMiner [11].

• Support counting: Given the set of potentially frequent candidates, this phase consists
of determining their actual support and keeping only those candidates whose support is
above the predefined minimum support threshold (i.e., those candidates that are actually
frequent).

Some of the proposed algorithms have instead been derived from the FP-Growth algo-
rithm [16]. Within this category, the PathJoin algorithm [32] uses compact structures called
FP-Trees to encode input data, while CHOPPER and XSpanner [31] use a sequence-based
codification for trees to identify frequent subtrees using frequent sequences.
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Table 2 Some frequent tree mining algorithms and the kind of patterns they can identify

Algorithm Induced Embedded Maximal
subtrees subtrees /closed

FreqT [1] •
AMIOT [17] •
uFreqT [19] •
HybridTreeMiner [11] •
FreeTreeMiner [12] •
FreeTreeMiner’ [22] •
X3Miner [25] •
MB3Miner [26] •
IMB3Miner [27] •
TreeMiner [36] •
TreeMinerD [36] •
RETRO [7] • •
Chopper [31] •
XSpanner [31] •
Uni3 [15] •
Unot [5] •
GASTON [20] •
Phylominer [37] •
SLEUTH [35] •
TRIPS [28] •
TIDES [28] •
CMTreeMiner [10] • •
PathJoin [32] • •
DRYADE [30] •
TreeFinder [29] •

3 Mining partially-ordered trees

The algorithms referred to in the previous section extract frequent patterns from trees that are
completely ordered or completely unordered, but none of them works with partially-ordered
trees.

However, partially-ordered trees appear in different application domains. For example,
Fig. 3 shows an XML document and its representation as a partially-ordered tree. This doc-
ument represents the purchase history of a particular customer. In market basket analysis, it
is important to preserve the order between the different orders placed by the customer, but
the order between the items in the same order is not relevant.

We have extended Zaki’s TreeMiner [36] and SLEUTH [35] algorithms to mine par-
tially-ordered trees. The algorithm we have devised is able to identify frequent subtrees, both
induced and embedded, in ordered, unordered, and partially-ordered trees. Hence its name,
POTMiner, which stands for Partially-ordered tree miner.

Our algorithm is based on Apriori [4], just like TreeMiner and SLEUTH. Therefore, it
follows an iterative pattern mining strategy. The kth iteration of the algorithm mines the
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<customer>
   <order>
      <item>milk</item>
      <item>bread</item>
   </order>
   <order>
      <item>beer</item>
      <item>diapers</item>
   </order>
</customer>

C

O O

Be DiMi Br

Fig. 3 An XML document and its partially-ordered tree representation

Fig. 4 The POTMiner algorithm

frequent subtrees of size k starting from the frequent subtrees of size k − 1 discovered in
the previous iteration. Each iteration is subdivided in two phases, candidate generation and
support counting, as we mentioned in Sect. 2.5 when we discussed existing tree mining
algorithms derived from Apriori.

Our algorithm employs Zaki’s class-based extension technique to generate candidates.
Candidates are grouped into equivalence classes, each class containing all the trees that share
the same prefix in their codification string.

The following example illustrates the approach we follow for candidate generation. Let us
suppose that the AA and AB trees are both frequent. These two trees belong to the same class,
denoted by [A], because they share the same prefix, i.e., A. When the AA tree of the class [A]
is extended, the resulting trees will have three nodes and all of them will belong to the class
[AA]. When we generate candidates of size three derived from AA, we must combine AA of
with all the frequent patterns of size two belonging to the same class than AA, i.e., [A]. If AA
and AB are the only elements in [A], the class-based extension technique will consider AAA,
AAB, AA↑A, and AA↑B as potential members of the [AA] class. Similarly, the extension
of the AB tree will produce the trees AB A, AB B, AB↑A, and AB↑B as candidate patterns
belonging to the class [AB]. Next, our algorithm will check which candidates are actually
frequent.

The pseudocode of the resulting algorithm is shown in Fig. 4. The details of the candidate
generation and support counting phases will be described in the following sections.

4 Candidate generation for partially-ordered trees

We use Zaki’s equivalence class-based extension method to generate candidates. This method
generates (k + 1)-subtree candidates by joining two frequent k-subtrees with k − 1 elements
in common.
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Fig. 5 Equivalence class with
two elements, AC A and AC↑B,
that share the prefix AC
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Two k-subtrees are in the same equivalence class [P] if they share the same codification
string until their (k −1)th node. Each element of the class can then be represented by a single
pair (x, p) where x is the kth node label and p specifies the depth-first position of its parent.

In Fig. 5, we represent an equivalence class with two elements, AC A and AC↑B. The
part of the tree that the class elements share is within the rectangle. Each node outside the
rectangle corresponds to a different element in the equivalence class. This way, AC A is
represented by (A, 1) in the class [AC], while AC↑B is represented by (B, 0).

TreeMiner [36] and SLEUTH [35] use the class-based extension method to mine ordered
and unordered embedded subtrees, respectively. The main difference between TreeMiner
and SLEUTH is that only those extensions that produce canonical subtrees are allowed in
SLEUTH, which works with unordered trees. This constraint avoids the duplicate genera-
tion of candidates corresponding to different representations of the same unordered trees.
However, since we must handle both ordered and unordered sets of sibling nodes in partially-
ordered trees, all extensions must be allowed in POTMiner, as happened in TreeMiner.

Elements in the same equivalence class are joined to generate new candidates. This join
procedure must consider two scenarios [35]: cousin extension and child extension. The fol-
lowing paragraphs describe these two mechanisms as employed by POTMiner.

4.1 Cousin extension

Let (x, i) and (y, j) denote two elements in the same class [P], and [Pi
x ] be the set of

candidate trees derived from the tree that is obtained by adding the element (x, i) to P .
Cousin extension is performed when the father of (y, j) precedes (or is) the father of the

element (x, i) in preorder, where the father of (y, j) is the node in position j and the father
of (x, i) is in position i . Formally,

if j ≤ i and |P| = k − 1 ≥ 1, then (y, j) ∈ [Pi
x ].

The first condition checks that only nodes on the rightmost branch of P are extended. The
second one makes cousin extension possible only when patterns have more than one node.

Figure 6 shows the elements generated by the cousin extension procedure from the ele-
ments in the class [AC] in Fig. 5.

We have extended the pattern AC with the element (A, 1) to generate the class [P1
A] whose

codification is AC A. This class contains two elements that can be obtained by the cousin
extension mechanism: first, the element (A, 1) in the class [P1

A] is the result of the union of
the element (A, 1) from [P] with itself; second, the element (B, 0) in the class [P1

A] is the
result of the union of the elements (A, 1) and (B, 0) from [P].

Cousin extension can also be applied to the pattern P using the element (B, 0), which
generates the class [P0

B] whose codification is AC↑B. This class contains the element (B, 0),
which can be obtained by the union of (B, 0) from [P] with itself. The union between (B, 0)
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Fig. 6 Cousin extension applied to the elements of the class in Fig. 5
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Fig. 7 Child extension applied to the elements of the class in Fig. 5

and (A, 1) in [P0
B] is not possible since the father or (A, 1) (i.e, the node in position 1), does

not precede the father of (B, 0) in [P] (i.e, the node in position 0).

4.2 Child extension

As above, let (x, i) and (y, j) denote two elements in the same class [P], and [Pi
x ] be the set

of candidate trees derived from the tree that is obtained by adding the element (x, i) to P .
When (y, j) is a sibling node of (x, i), the child extension mechanism lets us add y as a

child of the rightmost leaf of the tree. The formal definition of child extension is:

if j = i then (y, k − 1) ∈ [Pi
x ].

Child extension is used to make tree patterns grow in depth, while cousin extension lets
them grow in width.

Figure 7 shows the elements generated by the child extension method from the elements
in the class AC shown in Fig. 5.

The extension of the pattern AC with the element (A, 1) generates the elements of the
class [P1

A]. This class, apart from the two elements generated by the cousin extension mech-
anism, also contains a new element, (A, 2), which is obtained by the union of the element
(A, 1) in [P] with itself. The union of (A, 1) with (B, 0) does not generate a new element
because (B, 0) is not a sibling of (A, 1) in [P].

The extension of pattern AC with the element (B, 0) results in the class [P0
B]. This class

contains the element (B, 0), generated by the cousin extension mechanism above, and the
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element (B, 2), resulting from the child extension of (B, 0) in [P] with itself. As above, the
element (B, 0) cannot be joined with (A, 1) because (B, 0) is not a sibling of (A, 1) in [P].

5 Support counting for induced and embedded subtrees

Once POTMiner has generated the potentially frequent candidates, it is necessary to deter-
mine which ones are actually frequent.

The support counting phase in POTMiner follows the strategy of AprioriTID [4]. Instead
of checking if each candidate is present in each database tree, which is a costly operation, spe-
cial lists are used to preserve the occurrences of each pattern in the database, thus facilitating
the support counting phase.

Several kinds of occurrence lists have been proposed in the tree mining literature:

• Standard occurrence lists [11] preserve the identifiers of the trees as well as the matching
between the pattern nodes and the database tree nodes using a breadth-first codification
scheme. Each element of the occurrence list for pattern X has the form (tid, i1 . . . ik),
where tid is the tree identifier and i1 . . . ik represent the mapping between the nodes in
the pattern X and those in the database tree.

• Rightmost occurrence lists [1] only need to store the occurrences of the rightmost leaf of
X in each database tree. Rightmost occurrence lists, also known as RMO-lists, are stored
with each candidate and contain (tid, n) pairs, where n is the position of each tree node in
the database tree tid that matches with the rightmost leaf of the candidate pattern. These
lists are only useful for mining induced subtrees, since they only preserve one node for
each occurrence representing the whole subtree. Update operations can be performed on
these lists as in AprioriTID [4] so that the RMO-list of a new k-pattern can be obtained
from the RMO-lists of the k − 1 patterns it was generated from.

• Vertical occurrence lists [15,27] group the occurrence coordinates of each subtree, as
employed by the Tree Model Guide candidate generation method [26], which is a spe-
cialization of the rightmost extension technique we mentioned in Sect. 2.5.

• Scope lists [35] preserve each occurrence of a pattern X in the database using a tuple (t,
m, s) where t is the tree identifier, m stores which nodes of the tree match those of the
(k − 1) prefix of the pattern X in depth-first order, and s is the scope of the last node in
the pattern X . The scope of a node is defined as a pair [l,u] where l is the position of the
node in depth-first order and u is the position of its rightmost descendant. The scope list
of a pattern X is the list of all the tuples (t, m, s) representing the occurrences of X in the
tree database.

In POTMiner, we use scope lists to preserve the occurrences of a pattern in the tree data-
base. The main difference between our scope lists and the ones proposed by Zaki in TreeMiner
[36] and SLEUTH [35] is that we must add two new elements to the tuples in the scope lists,
d and �, in order to deal with induced subtrees and partially-ordered trees, respectively.

Our scope lists, then, contain tuples (t, m, s, d, �) where t is the tree identifier, m stores
which nodes of the tree match those of the (k − 1) prefix of the pattern X in depth-first order,
s=[l,u] is the scope of the last node in the pattern X , d is a depth-based parameter used for
mining induced subtrees (it is not needed when mining embedded subtrees), and � indicates
whether the last node of the pattern is ordered (� =o) or unordered (� =u) in the database
tree.

When building the scope lists for patterns of size 1, m is empty and the element d is
initialized with the depth of the pattern only node in the original database tree.
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Fig. 8 Class with two elements,
(A, 1) and (B, 0), and their scope
lists
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(A,1)

{1,02,[3,4],1,u}
{1,02,[4,4],2,o}
{2,01,[2,2],1,u}

(B,0)

{1,02,[1,1],1,u}
{2,01,[3,5],1,u}
{2,01,[4,4],2,o}

We obtain the scope list for a new candidate of size k by joining the scope lists of the two
subtrees of size k − 1 that were involved in the generation of the candidate. Let (tx , mx , sx ,
dx , �x ) and (ty , my , sy , dy , �y) be the scope lists of the subtrees involved in the generation
of the candidate. The scope list for this candidate is built by a join operation that depends on
the candidate extension method used to generate the candidate, i.e., whether the candidate
was generated by cousin extension or by child extension.

Figure 8 shows the class from Fig. 5 including the scope lists of its elements, which we
will use to illustrate how scope lists are joined.

5.1 In-scope join

The in-scope join, which is used in conjunction with the child extension mechanism, pro-
ceeds as follows:
if

1. tx = ty = t and
2. mx = my = m and
3. dx = 1 when we are looking for induced patterns, and
4. sy ⊂ sx (i.e., lx < ly and ux ≥ uy),

then add [t, m
⋃

{lx }, sy , dy − dx , �y] to the scope list of the generated candidate.
The third constraint is needed when we are interested in obtaining only the induced sub-

trees that are present in the tree database. This constraint is not used when mining embedded
subtrees.

Figure 9 shows the candidates obtained using child extension from the elements in the
class shown in Fig. 8. Let us suppose that we are identifying embedded patterns, i.e., the
value of dx is not taken into account.

AC AA was generated from the union of (A, 1) with itself using child extension. There-
fore, we perform the in-scope join of the elements in the scope list of (A, 1) with themselves.
The only pair that matches is (1,02,[3,4],1,u) and (1,02,[4,4],2,o), hence the scope list of
AC AA contains a single tuple, which is (1,023,[4,4],1,o).

AC↑B B results from the child extension of (B, 0) with itself. In this case, it is only
possible to join (2,01,[3,5],1,u) and (2,01,[4,4],2,o), generating a scope list containing just
(2,013,[4,4],1,o).
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Fig. 9 Child extension of the elements in the class shown in Fig. 8 and the scope lists resulting from the
in-scope join
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A
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 (B,0)

(A,1)

No elements
in the list

(B,0)

{1,023,[1,1],1,u}
{2,012,[3,5],1,u}

(B,0)

No elements in the list

Fig. 10 Cousin extension of the elements in the class shown in Fig. 8 and the scope lists resulting from the
out-scope join

5.2 Out-scope join

The out-scope join is used in conjunction with the cousin extension mechanism. It works as
follows:
if

1. tx = ty = t and
2. mx = my = m and
3. if the node is ordered and sx < sy (i.e., ux < ly) or the node is unordered and either

sx < sy or sy < sx (i.e., either ux < ly or uy < lx ),

then add [t, m
⋃

{lx }, sy , dy , �y] to the scope list of the generated candidate.
Figure 10 shows the candidates obtained by the cousin extension method from the elements

in the class shown in Fig. 8.
Two elements are generated by cousin extension from the pattern AC A. The element

(A, 1) in [AC A] is generated by the union of (A, 1) in [AC] with itself. Its scope list has no
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A

B C

B

B

C A

A BA C A C A B

[0,6]

[1,3]

[2,2] [3,3] [5,5] [6,6]

[4,6]

[2,2] [3,3] [5,5] [6,6]

[1,3]

[0,7]

[1,7]

[7,7]

Fig. 11 Sample dataset containing two partially-ordered trees

elements because no pair of tuples satisfy the three conditions required by the out-scope join.
The element (B, 0) in [AC A] is generated by the union of (A, 1) with (B, 0) in [AC]. We
can join the first element of each list, (1,02,[3,4],1,u) and (1,02,[1,1],1,u), in order to generate
(1,023,[1,1],1,u). The join of the third element in the scope list of (A, 1), (2,01,[2,2],1,u),
with the second element of the list of (B, 0), (2,01,[3,5],1,u), results in (2,012,[3,5],1,u).

The cousin extension of the pattern AC↑B results in the element (B, 0). In this case,
the out-scope join does not generate any elements, and, therefore, the scope list of (B, 0) in
[AC↑B] is empty.

5.3 Counting the support of a pattern

Checking if a pattern is frequent consists of counting the elements in its scope list. The
counting procedure is different depending on whether we consider the weighted support σw

or not.

• If we count occurrences using the weighted support, all the tuples in the scope lists must
be taken into account.

• If we are not using the weighted support, the support of a pattern is the number of different
tree identifiers within the tuples in the scope list of the pattern.

This procedure is valid for counting embedded patterns. When counting induced patterns,
we consider only the elements in the scope lists whose d parameter equals 1. It should be
noted that d represents the distance between the last node in the pattern and its prefix m,
hence d = 1 indicates the presence of an induced pattern provided that the scope lists were
generated using the join operations discussed above.

6 Example

In this section, we present an example to illustrate how POTMiner works with partially-
ordered trees. The dataset in Fig. 11 will be used as we identify all the induced subtrees that
appear in both trees (i.e., the minimum support is 100%).

Figure 12 shows the vertical representation of the trees in Fig. 11, where each node is
represented by its scope list. For example, the list corresponding to the node A contains six
elements because A appears six times in the dataset. Each element in the scope lists has all
the information corresponding to a single occurrence of a pattern as described in Sect. 5 (tree
identifier, prefix, scope, depth parameter, order).

Since the three nodes are frequent, we build the classes shown in Fig. 13. These classes
are built by child extension (Sect. 4.2) and the resulting scope lists are obtained using the
in-scope join operation (Sect. 5.1).
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A

{1,_,[0,6],0,_}
{1,_,[2,2],2,u}
{1,_,[6,6],2,o}
{2,_,[2,2],2,o}
{2,_,[1,7],1,u}
{2,_,[6,6],2,u}

B

{1,_,[1,3],1,_}
{1,_,[5,5],2,o}
{2_,[0,7],0,_}
{2,_,[3,3],2,o}
{2,_,[7,7],2,u}

C

{1,_,[4,6],1,o}
{1,_,[3,3],2,u}
{2,_,[1,3],1,u}
{2,_,[5,5],2,u}

Fig. 12 Vertical representation of the trees in Fig. 11

Fig. 13 Classes derived from the
patterns of size 1 in Fig. 11

A

B

C

{1,0,[2,2],2,u}
{1,0,[6,6],2,o}
{2,4,[6,6],2,u}

{1,0,[1,3],1,o}
{1,0,[5,5],2,o}
{2,4,[7,7],1,u}

{1,0,[4,6],1,o}
{1,0,[3,3],2,u}
{2,4,[5,5],1,u}

{1,1,[2,2],1,u}
{2,0,[4,7],1,u}
{2,0,[6,6],2,u}

{1,1,[3,3],1,u}
{2,0,[1,3],1,u}
{2,0,[5,5],2,u}

{1,4,[6,6],1,o}
{2,1,[2,2],1,o}

{1,4,[5,5],1,o}
{2,1,[3,3],1,o}

{2,0,[3,3],2,o}
{2,0,[7,7],2,u}

No elements in 
the scope list

A

A

A

B

A

C

B

A

B

B

B

C

C

A

C

B

C

C

All the elements in the first class, which are derived from the node A, are frequent because
there is at least one occurrence of each pattern in each tree. The other two classes contain
two frequent patterns and an infrequent one. In class B, the pattern B B appears twice in the
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A

B

A

B C

{1,01,[4,6],1,o}
{2,47,[5,5],1,u}

 Frequent elements:
 (C,0)

Infrequent elements :
 (A,0)(A,1)(B,0)(B,1)(C,1)

A

C

 Infrequent elements:
(A,0)(A,1)(B,0)(B,1)(C,0)(C,1)

B

A

B

A C

{1,12,[3,3],1,u}
{2,04,[1,3],1,u}

 Infrequent elements:
 (A,0)(A,1)(B,0)(B,1)(C,1)

 Frequent elements:
 (C,0)

B

C

B

C A

{1,13,[3,3],1,u}
{2,01,[4,7],1,u}

Infrequent elements:
 (A,0)(A,1)(B,0)(B,1)(C,1)

 Frequent elements:
 (A,0)

C

A

C

B

 Infrequent elements:
(A,0)(A,1)(B,0)(B,1)(C,0)(C,1)

 Infrequent elements:
(A,0)(A,1)(B,0)(B,1)(C,0)(C,1)

Fig. 14 Classes derived from the frequent patterns of size 2 in Fig. 13

second tree but it has no occurrences in the first tree. In class C , the pattern CC does not
appear in any of the trees.

Since we are looking for induced patterns, it is necessary to check if the discovered patterns
are actually frequent as induced patterns before we proceed with additional extensions. In
this case, the first element of class A, i.e. AA, is not a frequent induced pattern because all its
occurrences are embedded (their depth parameter is greater than 1). This element, therefore,
will not be extended and it will not be returned as a frequent induced pattern. However, it
must be taken into account for the extension of the other elements in the same class (i.e., AB
and AC). These elements are frequent-induced patterns since, although there are elements
with d = 2 in their scope lists, there is at least one occurrence of each pattern with d = 1 in
each database tree. Likewise, patterns B A, BC , C A, and C B are frequent.

Figure 14 shows the result of the extension of the six frequent induced patterns of size
2 obtained in the previous iteration. Since we are working with partially-ordered trees, we
have to address three different situations:

• o–o (ordered-ordered): The union of C A and C B does not produce any frequent pattern
because both C A↑B and C B↑A appear only in one of the database trees. These patterns
are built by cousin extension (Sect. 4.1) and the corresponding out-scope join operation
(Sect. 5.2) detects that C A↑B is not in the first tree and C B↑A is not in the second one.
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• u–u (unordered-unordered): The patterns B A↑C , BC↑↑A are both frequent. The reason
is that they have been generated by the union of unordered elements and the union can
be done in both directions.

• u–o (unordered-ordered): The pattern AB↑C is frequent, but the pattern obtained by
changing the order of its sibling nodes, AC↑B, is not frequent. AB↑C is an unordered
subtree in the second tree of the dataset but it only appears as an ordered subtree in the
first tree. Hence, both AC↑B and AB↑C occur in the first tree, but only AB↑C is in the
second one.

The classes derived from the frequent patterns of size 3 contain no frequent elements.
Therefore, no frequent patterns of size 4 are found in our tree dataset.

7 Implementation issues

In this section, we analyze the complexity of our algorithm and we discuss some imple-
mentation details that have important consequences in practice. In particular, we address the
parallelization of our algorithm in order to reduce its running time and we also propose an
alternative method to build scope lists in order to make POTMiner less memory consuming.

7.1 POTMiner complexity

POTMiner starts by computing the frequent patterns of size 1. This step is performed by
obtaining the vertical representation of the tree database, i.e., the individual nodes that appear
in the trees with their occurrences represented as scope lists. This representation is obtained
in linear time with respect to the number of trees in the database by scanning it and building
the scope lists for patterns of size 1. We then discard the patterns of size 1 that are not frequent.
This results in L scope lists corresponding to the L frequent labels in the tree database and
each frequent label leads to a candidate class of size 1.

Let c(k) be the number of classes of size k, which equals the number of frequent patterns
of size k, and e(k) the number of elements that might belong to a particular class of size k
(i.e., the number of patterns of size k + 1 that might be included in the class corresponding
to a given pattern of size k).

In POTMiner, each tree pattern grows only by adding a node as a child to a node in its
rightmost path. In the worst case, when the tree is just a sequence of size k, the number of
different trees of size k + 1 that can be obtained by the extension of the tree of size k is L ∗ k.
Hence, the number of elements in a particular class, e(k), is O(L ∗ k).

The number of classes of size 1 equals L , the number of frequent labels, i.e., c(1) = L .
The classes of size k + 1 are derived from the frequent elements in classes of size k. In the
worst case, when all the e(k) elements are frequent, c(k + 1) = c(k) ∗ e(k). Solving the
recurrence, we obtain c(k + 1) = c(k) ∗ e(k) = O(Lk+1 ∗ k!), which can also be expressed
as c(k) = O(Lk ∗ (k − 1)!).

For each pattern considered of size k + 1, POTMiner must perform a join operation to
obtain its scope list from the scope lists of the two patterns of size k that led to it.

The size of the scope list for a pattern of size k is O(t ∗ e) while the cost of a scope-list
join is O(t ∗ e2) , where t is the number of trees in the database and e is the average number
of embeddings of the pattern in each tree [35].

In the worst case, when we are looking for embedded subtrees, the number of embeddings
of a pattern of size k − 1 in a tree of size n equals the number of subtrees of size k − 1 within
the tree of size n. This number, s(k − 1), is bounded by

( n
k−1

) ≤ nk/(k − 1)!.
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Hence, the cost of the join operation needed for obtaining the scope list of a pattern of
size k, is j (k) = O(t ∗ s(k − 1)2) = O(t ∗ (nk/(k − 1)!)2).

The cost of obtaining all the frequent patterns of size k will be, therefore, O(c(k)∗ j (k)) =
O(Lk ∗ (k − 1)! ∗ t ∗ (nk/(k − 1)!)2) = O(Lk ∗ t ∗ n2k/(k − 1)!) = O(t ∗ (Ln2)k/(k − 1)!).

The total cost of executing the POTMiner algorithm to obtain all the frequent patterns up
to k = MaxSize is

∑
k=1...MaxSize(t ∗ (Ln2)k/(k − 1)!). Since the running time of our algo-

rithm is dominated by the time needed to discover the largest patterns (i.e., k = MaxSize),
POTMiner is O(t ∗ (Ln2)MaxSize/(MaxSize − 1)!).

Therefore, our algorithm is linear with respect to the number of trees in the tree database
and its execution time is also proportional to the number of patterns considered.

7.2 Parallelization: making POTMiner faster

Parallelism can be used to improve the performance of data mining algorithms. The parallel
implementation of these algorithms lets us exploit the architecture of modern multi-core pro-
cessors and multiprocessors. In fact, different parallel and distributed association rule mining
algorithms have been proposed in the literature, for instance [2,3,8,21,23,24].

POTMiner can also be parallelized. We have followed a candidate distribution approach
[3]. In POTMiner, generating candidates in parallel simply involves partitioning the set of
all candidate classes to be extended among the available processors.

The main idea behind the parallel version of POTMiner is that, in each step of the algo-
rithm, the extension of each candidate class and the corresponding scope list join operations
can be performed in parallel. Since these operations are independent from each other, each
one can be assigned to a different processor without incurring into significant coordination
costs.

The parallel version of POTMiner independently processes each class of size k to obtain
candidates of size k +1 and, at the end of each iteration, the results of the independently-pro-
cessed classes are combined to return all the candidate classes of size k + 1. The pseudocode
of the parallel version of POTMiner is shown in Fig. 15.

7.3 On-demand scope lists: reducing memory consumption

The candidate generation process is very memory consuming due to the huge amount of
scope lists that have to be maintained. Moreover, the size of each scope lists is proportional
to the number of embedded occurrences of each pattern, which can also be huge in large
databases.

We have devised a variant of our algorithm, called LightPOTMiner, which computes scope
lists on demand instead of storing all the scope lists in memory.

Fig. 15 Paralellization of the POTMiner algorithm
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Fig. 16 On-demand recursive
construction of scope lists in
LightPOTMiner

POTMiner builds the scope lists of a new candidate by joining the scope lists of the
patterns involved in its generation. LightPOTMiner recursively computes such scope lists
directly from the scope lists of the frequent nodes, i.e., the tree patterns of size 1.

The key idea of these recursive process is that it is always possible to know if a given
pattern was obtained by cousin extension or by child extension. Hence, we can infer which
subtrees were used to generate the tree pattern and which join operation to perform on the
corresponding scope lists, i.e., in-scope or out-scope join. The recursive algorithm employed
by LightPOTMiner is shown in Fig. 16.

In LightPOTMiner, scope lists are calculated on-demand. The scope list for a pattern of
size k is obtained by joining two scope lists of patterns of size k −1. Formally, the number of
join operations needed to obtain a scope list for a pattern of size k is given by the following
expression: join(k) = 1 + 2 ∗ join(k − 1) = 2k . The cost of computing a scope list in
LightPOTMiner is jlight(k) = 2k ∗ j (k) = O(2k ∗ t ∗ (nk/(k − 1)!)2).

The cost of obtaining all the frequent patterns of size k in LightPOTMiner will be, therefore,
O(c(k)∗ jlight(k)) = O(Lk ∗(k−1)!∗2k ∗t ∗(nk/(k−1)!)2) = O((2L)k ∗t ∗n2k/(k−1)!) =
O(t ∗ (2Ln2)k/(k − 1)!).

The total cost of executing the LightPOTMiner algorithm to obtain all the frequent patterns
up to k = MaxSize is

∑
k=1...MaxSize(t∗(2Ln2)k/(k−1)!). Since the running time of our algo-

rithm is dominated by the time needed to discover the largest patterns (i.e., k = MaxSize),
LightPOTMiner is O(t ∗ (2Ln2)MaxSize/(MaxSize − 1)!).

In other words, we introduce a 2MaxSize factor in the execution time of LightPOTMiner to
reduce memory consumption. LightPOTMiner just needs to store L scope lists corresponding
to the frequent patterns of size 1, while POTMiner had to store all the scope lists in memory,
up to c(MaxSize − 1), the number of frequent patterns of size MaxSize − 1 we might obtain,
which is LMaxSize−1 ∗ (MaxSize − 2)! in the worst case.

8 Experimental results

We have performed two series of experiments to evaluate POTMiner. First, we have per-
formed some experiments with synthetic datasets in order to compare POTMiner with existing
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Fig. 17 POTMiner and TreeMiner execution times when identifying induced patterns (left) and embedded
patterns (right) in completely-ordered trees

algorithms. Second, we have devised some experiments with the aim of analyzing POTMiner
performance with real datasets.

8.1 POTMiner versus TreeMiner/SLEUTH

All the experiments described in this section have been performed on a 2 GHz Intel T7200
Dual Core processor with 2 GB of main memory running on Windows Vista. POTMiner
has been implemented in Java using Sun Microsystems JDK 5, while Zaki’s TreeMiner and
SLEUTH C++ implementations were obtained from http://www.cs.rpi.edu/~zaki/.

The experiments were performed with five synthetic datasets generated by the tree gener-
ator available at http://www.cs.rpi.edu/~zaki/software/TreeGen.tgz. The datasets were obt-
ained using the generator default values and varying the number of trees from 10 to 100,000.
The labeled trees in these datasets contain 10 different labels, their maximum depth is 5, and
their nodes maximum fanout is also 5.

8.1.1 Ordered trees

In our first experiments, we compare POTMiner to TreeMiner [36]. Since TreeMiner works
on ordered trees, we consider that the trees in our synthetic datasets are completely-ordered.

Figure 17 shows POTMiner and TreeMiner execution times using a minimum support
threshold of 20% to identify both induced and embedded patterns in our datasets.

POTMiner, when dealing with completely-ordered trees, works as TreeMiner. Therefore,
the patterns identified by POTMiner and TreeMiner are exactly the same.

It should be noted that the charts in Fig. 17 use a logarithmic scale. The results show
that both POTMiner and TreeMiner are efficient, scalable algorithms for mining induced and
embedded subtrees in ordered trees.

For small datasets, POTMiner execution times are slightly higher than TreeMiner exe-
cution times. However, this difference disappears in larger datasets and POTMiner is even
faster than TreeMiner. The observed differences are probably due to the different program-
ming platforms used in the implementation of the two algorithms (Java for POTMiner, C++
for TreeMiner). The Java Virtual Machine used by our implementation of POTMiner intro-
duces some start-up overhead with respect to the native C++ implementation of TreeMiner.
This additional overhead is noticeable when dealing with small datasets, but quickly disap-
pears on larger datasets. In larger datasets, POTMiner outperforms TreeMiner due to a more
careful dynamic memory management.
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Fig. 18 POTMiner and SLEUTH execution times when identifying induced patterns (left) and embedded
patterns (right) in completely-unordered trees

8.1.2 Unordered trees

In this series of experiments, we compare the performance of POTMiner with the algorithm
proposed by Zaki for the identification of frequent patterns in unordered trees: SLEUTH [35].
The datasets we have used for these experiments contain the same trees we used to compare
POTMiner and TreeMiner, but this time we regard them as completely-unordered trees.

The patterns obtained by POTMiner, which was designed to deal with partially-ordered
trees, are always ordered. For unordered patterns, POTMiner returns all the frequent pat-
terns obtained with different permutations for the unordered sibling nodes. In the case of
completely-unordered trees, all such permutations will be frequent. Since SLEUTH only
returns the canonical representation of each frequent pattern, the number of patterns that
POTMiner returns is larger than the number of patterns returned by SLEUTH, even though
both algorithms identify exactly the same unordered tree patterns.

Figure 18 shows the results we have obtained when comparing POTMiner and SLEUTH.
POTMiner and SLEUTH are similar in efficiency and scalability. The differences that can be
observed are, again, due to their different execution platforms and implementation details.

8.1.3 Partially-ordered trees

We have also performed some experiments with partially-ordered trees. Since TreeMiner
[36] and SLEUTH [35] cannot be applied to partially-ordered trees, we have studied the
behavior of POTMiner when dealing with this kind of trees.

Starting from the same datasets used in the previous experiments, we have randomly
considered tree nodes as ordered or unordered. Figure 19 shows POTMiner execution times
and the number of patterns discovered when varying the percentage of ordered nodes in our
synthetic datasets.

It should be noted that the number of discovered patterns decrease when the number of
trees increase. This is due to the fact that the minimum support threshold is a relative value
(20% in our experiments) and the trees were randomly generated. Therefore, the probability
of a given pattern reaching the minimum support threshold decreases as the number of trees
is increased.

As we had expected, we found that execution times slightly decrease when the percentage
of ordered nodes is increased, since ordered trees are easier to mine than unordered trees and
the number of frequent patterns is smaller in ordered trees than in unordered ones.
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# Trees Time Patterns Time Patterns Time Patterns Time Patterns Time Patterns
10 59.2 35 94.5 32 43.0 31 44.1 30 57.0 28

100 47.8 18 103.0 18 79.8 17 62.7 17 44.2 16
1000 120.1 8 109.5 8 98.7 8 105.1 8 103.2 7

10000 383.0 7 447.8 7 452.6 7 410.1 7 373.5 6
100000 2608.5 7 2812.5 7 2774.0 6 2832.2 6 2557.0 6

# Trees Time Patterns Time Patterns Time Patterns Time Patterns Time Patterns
10 53.2 53 74.5 48 54.1 46 58.9 43 87.1 41

100 53.3 19 95.4 19 55.7 18 64.2 18 76.2 17
1000 117.1 11 104.6 10 110.4 10 126.1 10 104.2 9

10000 378.9 7 405.5 7 497.4 7 412.7 7 374.4 6
100000 2572.7 7 2804.5 7 2747.7 6 2794.5 6 2530.4 6

Embedded subtrees
0% ordered nodes 25% ordered nodes 50% ordered nodes 75% ordered nodes 100% ordered nodes

50% ordered nodes 75% ordered nodes 100% ordered nodes
Induced subtrees

0% ordered nodes 25% ordered nodes

Fig. 19 POTMiner execution times and number of discovered patterns when varying the percentage of ordered
nodes in partially-ordered trees

We have performed experiments to identify both induced and embedded subtrees in the
five datasets of varying size we used in our prior series of experiments. For these randomly-
generated datasets, no important differences have been observed between the time required
for the identification of induced patterns and the time needed for the discovery of embedded
patterns.

8.2 POTMiner on real datasets

We have also performed some experiments to study POTMiner behavior on real datasets. The
datasets used in these experiments come from the Mutagenesis database. This multirelational
database is frequently used as an ILP benchmark.

The Mutagenesis database contains four relations. We can derive a tree database from
it by building a tree from each tuple in its target relation. The links from one relation to
another within the database (i.e., the foreign keys in relational database terms) let us grow
the different tree branches. This procedure has been used to obtain two different tree datasets:

• The first dataset, called Muta2, is built by following two links between Mutagenesis rela-
tions (mole–molatm and moleatm–atom). This dataset contains 188 trees with 138 nodes
per tree (a total of 25,969 nodes).

• The second dataset, called Muta3, is built by following three links between Mutagenesis
relations (mole–molatm, moleatm–atom, and atom–bond). This dataset contains 188 trees
with 435 nodes per tree (81,898 nodes overall).

We have performed several experiments on these datasets to identify embedded subtrees of
different sizes using several support thresholds. These experiments have been performed on
an Intel 2.66 GHz Q6700 4-core processor with 4GB of main memory running on Windows
Vista.

8.2.1 Discovered patterns

Figure 20 displays the number of patterns identified by POTMiner in the Muta2 and Muta3
datasets when varying the minimum support threshold and the maximum pattern size.

We have used three different minimum support thresholds in our experiments (5, 10, and
20%) to obtain all the frequent embedded patterns of size 2 (L2), size 3 (L3), and size 4 (L4)
in the Muta2 and Muta3 datasets.
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Muta2 Muta3

20% 10% 5% 20% 10% 5%
L2 82 112 183 L2 115 145 216
L3 857 1245 2438 L3 1922 2593 4618
L4 9136 14993 31241 L4 40571 58106 111446

Minimum Support Minimum Support
MaxSize MaxSize

Fig. 20 Number of patterns identified by POTMiner in the Muta2 and Muta3 datasets
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POTMiner LightPOTMiner
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CPU Time(%)

POTMiner LightPOTMiner

Fig. 21 Additional CPU time required by LightPOTMiner on the Muta2 (left) and Muta3 (right) datasets
with respect to POTMiner

8.2.2 LightPOTMiner

LightPOTMiner is the variant of POTMiner that builds scope lists on demand, as described
in Sect. 7.3, in order to avoid the need to store all the scope lists in memory.

LightPOTMiner trades space for time. Memory consumption is reduced at the cost of
the additional CPU time required to build the scope lists as needed. Figure 21 displays the
execution time overhead introduced by LightPOTMiner when identifying embedded patterns
in the Muta2 and Muta3 datasets using a 20% minimum support threshold. In Muta2, Light-
POTMiner is three times slower than POTMiner while, in Muta3, the overhead is lower than
two times, a reasonable cost if we take into account the huge memory savings we obtain:
POTMiner, as TreeMiner or SLEUTH, would need to store tens of thousands of long scope
lists, while LightPOTMiner just requires a few dozens, for the frequent items in the database.

8.2.3 Parallel implementation of POTMiner and LightPOTMiner

We have also performed some experiments to evaluate the speed-up obtained by the par-
allel versions of POTMiner and LightPOTMiner. We have parallelized these algorithms as
described in Sect. 7.2.

Figure 22 shows the actual running times (in s) required by the parallel implementation
of POTMiner using four cores in a quad core processor. These results correspond to the time
required by POTMiner to identify embedded subtrees in the Muta2 and Muta3 datasets for
different minimum support thresholds and pattern sizes.

Muta2 Muta3

20% 10% 5% 20% 10% 5%
L2 1,62 1,62 1,62 L2 41,67 41,76 42,29
L3 1,98 2,11 2,22 L3 44,55 44,90 45,61
L4 17,19 20,69 26,83 L4 408,94 435,00 493,43

Minimum Support Minimum Support
MaxSize MaxSize

Fig. 22 Parallel POTMiner execution time (s) on the Muta2 and Muta3 datasets using four processors
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Fig. 23 Parallel POTMiner execution speedup on the Muta2 (left) and Muta3 (right) datasets
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Fig. 24 Parallel LightPOTMiner speedup on the Muta2 (left) and Muta3 (right) datasets
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Fig. 25 Parallel LightPOTMiner versus parallel POTMiner for different minimum support thresholds on the
Muta2 (left) and Muta3 (right) datasets

Figure 23 shows the performance improvement we have obtained with the parallel version
of POTMiner. Using just two threads of control, the parallel POTMiner is 1.6 times faster
than the sequential POTMiner in Muta2 and 1.7 times faster in Muta3. Using four processors,
we obtain a 2.1× and 2.4× improvement on Muta2 and Muta3, respectively. That means that
over 80% of POTMiner execution time is effectively parallelized.

LightPOTMiner is more CPU-bound than POTMiner, while POTMiner is more I/O-bound
than LightPOTMiner. The parallel implementation of LightPOTMiner obtains similar results
with respect its sequential implementation. The performance speed-up obtained by the par-
allel implementation of LightPOTMiner is shown in Fig. 24.

Finally, Fig. 25 compares the parallel implementations of POTMiner and LightPOTMiner
using four processors in parallel. As in their sequential implementations, LightPOTMiner
requires the additional CPU time introduced by the 2MaxSize factor analyzed in Sect. 7.3.
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9 Conclusions and future work

There are many different tree mining algorithms that work either on ordered or unordered
trees, but none of them, to our knowledge, works with partially-ordered trees, that is, trees
that have both ordered and unordered sets of sibling nodes. We have devised a new algorithm
to address this situation that is as efficient and scalable as existing algorithms that exclusively
work on either ordered or unordered trees.

Partially-ordered trees are important because they appear in different application domains.
In the future, we expect to apply our tree mining algorithm to some of these domains. In
particular, we believe that our algorithm for identifying frequent subtrees in partially-ordered
trees can be useful in different applications:

• XML documents [18], due to their hierarchical structure, are directly amenable to tree
mining techniques. Since XML documents can contain both ordered and unordered sets
of nodes, partially-ordered trees provide a better representation model for them and POT-
Miner is, therefore, better suited for mining them than previous tree mining techniques.

• In Software Engineering, it is usually acknowledged that mining the wealth of informa-
tion stored in software repositories can “support the maintenance of software systems,
improve software design/reuse, and empirically validate novel ideas and techniques”
[14]. For instance, there are hierarchical program representations, such as dependence
higraphs [6], that can be viewed as partially-ordered trees, hence the potential of tree
mining techniques in software mining.

• Multi-relational data mining [13] is another emerging research area where tree mining
techniques can be useful. Algorithms such as POTMiner can help improve existing multi-
relational classification [33] and clustering [34] algorithms.

We also plan to extend POTMiner to deal with partial or approximate tree matching, a
feature that would be invaluable in many real-world problems, from entity resolution in XML
documents to program element matching in software mining.
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