
Expert Systems with Applications 36 (2009) 7882–7887
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
The design and use of the TMiner component-based data mining framework

Fernando Berzal *, Juan-Carlos Cubero, Aída Jiménez
IDBIS Research Group, Department of Computer Science and Artificial Intelligence, ETSIIT, University of Granada, Granada 18071, Spain

a r t i c l e i n f o
Keywords:
Data mining
Component-based systems
Application frameworks
Software architecture
Design patterns
Design guidelines
Usage modes
0957-4174/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.eswa.2008.11.033

* Corresponding author.
E-mail addresses: fberzal@decsai.ugr.es (F. Berzal),

Cubero), aidajm@decsai.ugr.es (A. Jiménez).
a b s t r a c t

This paper provides some practical guidelines for the design of data mining frameworks. It describes the
rationale behind some of the key design decisions that guided the design, development, and implemen-
tation of the TMiner component-based data mining framework. TMiner is a flexible framework that can
be used as a stand-alone tool or integrated into larger business intelligence (BI) solutions. TMiner is a
general-purpose component-based system designed to support the whole KDD process into a single
framework and thus facilitate the implementation of complex data mining scenarios.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Traditional on-line transaction processing systems, also known
as OLTP systems, work with relatively small chunks of data at a
time, while on-line analytical processing systems, or OLAP sys-
tems, require the analysis of huge amounts of data (Chaudhuri &
Dayal, 1997). It comes as no surprise that OLAP systems have very
specific needs that conventional application frameworks do not
properly address.

This fact has led to the development of data mining (Tan, Stein-
bach, & Kumar, 2006; Han & Kamber, 2006) and data warehousing
(Widom, 1995; Kimball & Ross, 2002), which try to satisfy the
expectations of the so-called knowledge workers (executives, man-
agers, and analysts).

This paper describes the rationale behind some key design deci-
sions that led to the development of a component-based data min-
ing framework called TMiner. As we will see, TMiner can be used as
a flexible stand-alone data mining tool, but it has also been de-
signed so that it can be easily incorporated into larger business
intelligence solutions.

It should be noted that the tools and techniques TMiner collects
somewhat overlap with existing Machine Learning algorithm col-
lections, such as Weka (Witten & Frank, 2005). However, TMiner
is more that a mere collection of independent algorithms for data
mining tasks that can be directly applied on prepared datasets or
invoked from your own code.

Some open-source and commercial data mining libraries (Prud-
sys, 2008; Rapid-I, 2008) include facilities for their integration into
actual enterprise systems. TMiner also provides usage modes spe-
cially designed for its tight integration into larger solutions.
ll rights reserved.

jc.cubero@decsai.ugr.es (J.-C.
TMiner is a general-purpose component-based system designed
to support the whole KDD process into a single framework and
thus facilitate the implementation of complex data mining scenar-
ios. In this sense, TMiner is designed to be useful in a wide variety
of application domains, in sharp contrast to domain-specific data
mining systems such as iKDD or SA. While the interactive knowl-
edge discovery and data mining system, iKDD, was designed for
particular bioinformatics-related problems (Etienne, Wachmann,
& Zhang, 2006), Perttu Laurinen’s Smart Archive, SA, has been pro-
posed for implementing data mining applications using data
streams (Laurinen, Tuovinen, & Roning, 2005).

The rest of our paper is organized as follows. Section 2 describes
the architectural design of the TMiner framework and its compo-
nent model. Section 3 describes the facilities TMiner offers for dif-
ferent usage scenarios, from the casual user who wants to perform
simple data analysis tasks and the researcher who needs a more
thorough experimentation, to the systems integrator who needs
to incorporate data mining features into final solutions. Finally,
Section 4 concludes our paper with some comments on the current
status of TMiner and our expectations for its future.

2. TMiner component model

This section describes the TMiner component model, what TMin-
er components look like and the basic infrastructure provided by the
TMiner framework for the design and use of new components.

2.1. TMiner components

A software component is ‘‘a unit of composition with contractu-
ally defined interfaces and explicit context dependencies” (Szyper-
ski, Gruntz, & Murer, 2002). These context dependencies are
specified by stating the required interfaces and the acceptable exe-
cution platform(s) for the software component. TMiner compo-

mailto:fberzal@decsai.ugr.es
mailto:jc.cubero@decsai.ugr.es
mailto:aidajm@decsai.ugr.es
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


F. Berzal et al. / Expert Systems with Applications 36 (2009) 7882–7887 7883
nents have well-defined I/O ports whose specific properties can be
easily consulted by means of the TMinerComponentMetadata ob-
ject that is attached to every TMinerComponent (see Fig. 1).

Software components are units of independent deployment, in
contrast to objects in object-oriented programming (OOP), which
are mere units of instantiation. Components are also units of
third-party composition and they typically have no (externally) ob-
servable state. However, as objects in OOP, they encapsulate their
state and behavior.

Obviously, components still act through objects in object-ori-
ented systems, but they do not only contain classes. They can also
contain additional resources. In TMiner, components must include
a component descriptor describing its I/O ports and any additional
metadata that might be required for the component to be used in
practice. Fig. 2 shows an example of such a descriptor in XML for-
mat. The component descriptor includes the names, textual
descriptions, and required interfaces for all the component I/O
ports, as well as default values for component parameters. This
information is extremely useful, for instance, in the automatic gen-
eration of the user interface for data mining tools (component
developers do not need to worry about user interface issues and
they can just focus on the development of the component
themselves).

In a data mining framework such as TMiner, the user has to ana-
lyze large datasets with the help of mining tools and techniques.
Data is gathered from different data sources and data mining algo-
rithms are used in order to build knowledge models (Berzal, Blan-
co, Cubero, & Marín, 2002). Hence TMiner components fall into two
main categories:

� TMinerModels represent the entities data miners work with.
They may provide the information our user needs to access dif-
ferent data sources (i.e. dataset metadata). They can also be
descriptive or predictive models built from those data sources.
They can even be used as the input to other mining algorithms
in order to solve second-order data mining problems.

� TMinerTasks represent the tasks data miners must perform to
analyze data. They are the active objects that users need to build
new models.

All components in TMiner must be serializable (i.e. they can be
stored as byte sequences for later reconstruction). This is necessary
Fig. 1. TMiner componen
because TMinerModels must be stored for later use, while
TMinerTasks might need to be transferred to different processing
nodes in a distributed computing environment.

Additionally, TMiner core classes include some standardized
interfaces designed to simplify the representation, distribution,
and use of the models discovered in the KDD process. For instance,
XMLable components can be represented as XML documents,
hence facilitating their storage for later use, as well as their visual-
ization in standard web browsers (with the help of the correspond-
ing XSLT style sheets). Likewise SQLable components, such as
many different kinds of symbolic classification models, can be con-
verted into SQL scripts that might be invaluable in practice, since
they provide a very convenient method for using such models on
relational databases.

Any information system can be described by a structure, a
mechanism, and a policy following Perry and Kaiser’s SMP model
(Perry & Kaiser, 1991). In our case, TMiner models determine the
structure of the system. TMiner tasks, which are responsible for
the implementation of data mining techniques, are the mecha-
nisms that let us solve data mining problems. Finally, the set of
rules and strategies imposed by the system environment are used
to establish its usage and security policies. This is the job of the
TMiner framework we now proceed to describe.

2.2. The TMiner framework

A component framework is ‘‘a collection of rules and interfaces
(contracts) that govern the interaction of components plugged into
the framework” (Szyperski et al., 2002). Component frameworks
can also be seen as components that plug into higher-level compo-
nent frameworks (e.g. when integrated into larger solutions).

Component-based frameworks are intended to help developers
to build increasingly complex systems, enhance productivity and
promote component reuse by means of well-defined patterns (Fay-
ad & Schmidt, 1997; Larsen, 2000). Such frameworks are widely-
used in enterprise information systems, but they usually only pro-
vide low-level information processing capabilities, since they are
OLTP-application-oriented. In contrast, TMiner is a component-
based framework that has been custom-tailored to solve decision
support problems, even though it should be noted that its ap-
proach could also be of use in a wide range of scientific computing
applications.
t model base classes.



Fig. 2. TMiner component descriptor.

Fig. 3. The Enterprise Component Framework.

7884 F. Berzal et al. / Expert Systems with Applications 36 (2009) 7882–7887
Most commercial component-based frameworks, such as Sun
Microsystems Enterprise JavaBeans or the Microsoft.NET Com-
mon Language Runtime, are based on a common architectural
pattern, known as the Enterprise Component Framework
(Kobryn, 2000). A simplified representation of this pattern is de-
picted in Fig. 3. This pattern contains six roles, shown as rectan-
gles in the figure, whose responsibilities can be described as
follows:



F. Berzal et al. / Expert Systems with Applications 36 (2009) 7882–7887 7885
� Clients are the entities that request services from a component
in the framework. End users, component developers, research-
ers, and other automated systems may act as clients in TMiner
(see Section 3 for more information on TMiner usage modes).

� Components provide the services requested by clients. As men-
tioned above, both data access modules and knowledge models
are full-fledged components in TMiner. Data mining algorithms
could also be considered as components on their own, but they
are just used through factory proxies to build knowledge models.

� Proxies relay calls from clients to components. This level of indi-
rection is hidden from the client perspective and it makes loca-
tion transparency possible (when needed, it also supports
message interception). Factory proxies perform object factory
operations that are common to all framework components (such
as creation or retrieval), while remote proxies handle operations
that are component-specific (e.g. inspection and parameter set-
ting). Proxies are usually supported by the reflection capabilities
found in modern computing platforms.

� The container represents the framework’s runtime environ-
ment. The container provides distributed computing services,
load balancing, interprocess communication, security, persis-
tence, resource discovery, and hot deployment mechanisms.
Transactions are usually supported by enterprise frameworks
but are not needed in the TMiner data mining framework. TMin-
er, however, needs specific scheduling, monitoring, and notifica-
tion mechanisms to manage data mining tasks.

� Finally, the persistence service, typically managed and coordi-
nated by the container, is used for the storage and retrieval of
framework components.

Component-based frameworks are suitable for large-scale sys-
tems because they provide a solid foundation upon which whole
applications and product lines can be deployed in a systematic
and controlled way. The TMiner architecture makes the develop-
ment of new techniques and algorithms faster. Once a new compo-
nent has been devised and tested in the laboratory, it can be easily
deployed into production environments with the help of a simple
component descriptor. This simplifies maintenance and upgrade
efforts, hence smoothing the evolution any system must face dur-
ing its lifetime.

2.3. TMiner subsystems

Apart from the common infrastructure needed to build typical
data mining tools, TMiner provides support for flexible data access
and many of the most common data mining algorithms and
techniques

� The TMiner data access subsystem acts as its extract, trans-
form, and load (ETL) front-end and it makes heavy use of well-
known object-oriented design patterns for improving its flexibil-
ity (Gamma, Helm, Johnson, & Vlissides, 1995).

� The TMiner knowledge discovery subsystem provides a wealth
of classification models and clustering techniques, as well as
efficient association rule mining components and anomaly
detection tools.

3. TMiner usage modes

System usability is critical for user acceptance. Provided that
knowledge workers are not necessarily knowledgeable about com-
puters, TMiner must provide different usage modes for different
usage scenarios.

TMiner supports the progressive usage model or triphasic mod-
el. This model recognizes that patterns of usage evolve as users
build experience and that supporting these patterns requires spe-
cific and somewhat different facilities within the user interface
architecture (Constantine & Lockwood, 1999). TMiner, therefore,
provides different usage modes for novice, intermediate, and ad-
vanced users:

3.1. Basic usage modes

Novice users tend to perform basic tasks, with a limited use of
alternatives. The underlying complexity of the system should be
invisible to this kind of users. TMiner acknowledges this fact and
the default values typically included in a component descriptor
let users employ a data mining component ‘out of the box’.

Beginners usually interact with the system by trial and error,
and they have a strong dependence on help and guidance. For
them, TMiner provides an attractive Web interface that incorpo-
rates novel visualization techniques in order to motivate explora-
tion, such as VisAR (Techapichetvanich & Datta, 2005). This rule
visualization technique is based on parallel coordinates, a common
way of visualizing high-dimensional geometry and analyzing mul-
tivariate data (Inselberg, 1985).

The ability to share data among system users is another aspect
that is closely related to a data mining system usability. TMiner
lets casual system users to browse through already-discovered
models and share their own models with other system users. This
computer-supported cooperative work (CSCW) focus is especially
relevant in data mining applications, where the discovered knowl-
edge must be properly represented and communicated (Berzal,
Cubero, Marín, Serrano, & Blanco, 2003).

3.2. Intermediate usage modes

Intermediate TMiner users have expanding needs and they typ-
ically exhibit changing patterns of interactions. ‘‘Intermediates
(those who are neither beginners nor old hands, and who make
up most of the user population) are perhaps the most neglected
user segment in terms of interface design, yet there are possibly
more intermediate users than beginners or experts” (Constantine,
1994).

TMiner component model facilitates the construction of data
mining tools that let knowledgeable users tune data mining tech-
niques by playing with the knobs TMiner components provide,
i.e. their I/O ports. Component descriptors are extremely useful
here, since they can be used to automatically generate the user
interface needed for such knob-turning.

3.3. Advanced usage modes

Expert users’ primary concerns are efficiency and productivity.
They need to perform complex, sophisticated tasks that are often
nonstandard or might be unsupported. They need interfaces that
operate in multiple modes, frequently changed to fit the particular
demands of the task at hand.

These advanced users can directly use TMiner components from
their own Java code. They can even customize them by attaching
dynamic ports to TMiner components without having to modify
their source code nor create component subclasses. This can be
helpful when monitoring system performance or addressing other
cross-cutting concerns that appear in practice. AspectJ, an aspect-
oriented extension for the Java programming language, can also
be used with TMiner components to simplify the implementation
of such cross-cutting concerns.

Sometimes, advanced users prefer faster methods to interact
with TMiner components, without having to go through a com-
plete edit–compile–build–run cycle each time they want to tweak
anything. TMinerScript is included in TMiner for such users. TMin-
erScript is a scripting language that can be used to control TMiner



Fig. 4. TMinerScript code snippet needed to access a particular dataset through the standard JDBC API.

7886 F. Berzal et al. / Expert Systems with Applications 36 (2009) 7882–7887
using the syntax of JavaScript (Flanagan, 2006). Scripting languages
such as TMinerScript, by being accessible to the end user, enable
the behavior of an application to be adapted to the user’s specific
needs and thus provide the greatest possible degree of control to
the user. Figs. 4 through 6 show some simple TMinerScript scripts
that can be used to perform common data mining tasks in TMiner.

4. Current status and future directions

We have described some of the main features of TMiner, a com-
ponent-based data mining framework.
Fig. 5. TMinerScript code snippet neede
TMiner can be used as a stand-alone web-based data mining
tool, providing components for many of the tasks we might need
to analyze data, ranging from data access to knowledge discovery.
Its current version lets users build classification models, cluster
data, mine associations, and detect anomalies.

TMiner component model is also suitable for its integration into
larger solutions whose requirements include some of the data min-
ing features TMiner provides. In fact, TMiner offers alternative
usage modes intended to facilitate such integration. On the one
hand, it can be directly called from third-party code as any other
component library. On the other hand, clients can use the scripting
d to build a decision tree classifier.



Fig. 6. TMinerScript code snippet needed to run a cross-validation experiment.

F. Berzal et al. / Expert Systems with Applications 36 (2009) 7882–7887 7887
facilities TMiner provides for automating the execution of data
mining tasks.

Our current research efforts focus on the development of novel
data mining techniques (e.g. dealing with different kinds of data
sources) as well as on the improvement of current data mining
solutions by providing a scalable data mining system for scientific
and business applications.

Acknowledgement

Work partially supported by research project TIN2006-07262.

References

Berzal, F., Blanco, I., Cubero, J. C., & Marín, N. (2002). Component-based data mining
frameworks. Communications of the ACM, 45(12), 97–100.

Berzal, F., Cubero, J. C., Marín, N., Serrano, J. -M., & Blanco, I. (2003). Usability issues
in data mining systems. In ICEIS 2003: Proceedings of the 5th international
conference on enterprise information systems. Artificial intelligence and decision
support systems, Vol. II. pp. 418–421.

Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and OLAP
technology. SIGMOD Record, 26(1), 65–74.

Constantine, L. L. (1994). Interfaces for intermediates. IEEE Software, 11(4),
96–99.

Constantine, L. L., & Lockwood, L. A. D. (1999). Software for use: A practical guide to
the models and methods of usage-centered design. ACM Press/Addison-Wesley.

Etienne, J., Wachmann, B., & Zhang, L. (2006). A component-based framework for
knowledge discovery in bioinformatics. In KDD 2006: Proceedings of the 12th
ACM SIGKDD international conference on knowledge discovery and data mining.
pp. 916–921.

Fayad, M. E., & Schmidt, D. C. (1997). Object-oriented application frameworks.
Communications of the ACM, 40(10), 32–38.
Flanagan, D. (2006). JavaScript: The definitive guide. Sebastopol, CA, USA: O’Reilly &
Associates, Inc..

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Elements of
reusable object-oriented software. Addison-Wesley.

Han, J., & Kamber, M. (2006). Data mining: Concepts and techniques. Morgan
Kaufmann.

Inselberg, A. (1985). The plane with parallel coordinates. The Visual Computer, 1(2),
69–91.

Kimball, R., & Ross, M. (2002). The data warehouse toolkit: The complete guide to
dimensional modeling. John Wiley & Sons, Inc.

Kobryn, C. (2000). Modeling components and frameworks with UML.
Communications of the ACM, 43(10), 31–38.

Larsen, G. (2000). Component-based enterprise frameworks. Communications of the
ACM, 43(10), 24–26.

Laurinen, P., Tuovinen, L., & Roning, J. (2005). Smart archive: A component-based
data mining application framework. In ISDA 2005: Proceedings of the 5th
international conference on intelligent systems design and applications. pp. 20–25.

Perry, D. E., & Kaiser, G. E. (1991). Models of software development environments.
IEEE Transactions on Software Engineering, 17(3), 283–295.

Prudsys (2008). XELOPES library – eXtEnded Library fOr Prudsys Embedded
Solutions. <http://www.prudsys.com/>.

Rapid-I (2008). RapidMiner (formerly YALE, Yet Another Learning Environment).
<http://rapid-i.com/>.

Szyperski, C., Gruntz, D., & Murer, S. (2002). Component software: Beyond object-
oriented programming. Addison-Wesley.

Tan, P.-N., Steinbach, M., & Kumar, V. (2006). Introduction to data mining. Addison-
Wesley.

Techapichetvanich, K., & Datta, A., (2005). VisAR: A new technique for visualizing
mined association rules. In ADMA 2005: 1st international conference on advanced
data mining and applications, LNCS 3584. pp. 88–95.

Widom, J. (1995). Research problems in data warehousing. In CIKM 1995:
Proceedings of the 1995 international conference on information and knowledge
management, November 28 – December 2 (pp. 25–30), Baltimore, Maryland,
USA: ACM.

Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and
techniques. Morgan Kaufmann.

http://www.prudsys.com/
http://rapid-i.com/

	The design and use of the tminer TMiner component-based data mining framework
	Introduction
	TMiner Component Modelcomponent model
	TMiner Componentscomponents
	The TMiner Frameworkframework
	TMiner Subsystemssubsystems

	TMiner usage modes
	Basic Usage Modesusage modes
	Intermediate Usage Modesusage modes
	Advanced Usage Modesusage modes

	Current Status status and Future Directionsfuture directions
	Acknowledgement
	References


