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This paper illustrates how aspect-oriented programming techniques support some tasks whose implementation

using conventional object-oriented programming would be extremely time-consuming and error-prone. In
particular, we have successfully employed aspects to evaluate and monitor the I/O performance of alternative
data mining techniques. Without having to modify the source code of the system under analysis, aspects
provide an unintrusive mechanism to perform this kind of performance analysis. In fact, aspects let us probe
a system implementation so that we can identify potential bottlenecks, detect redundant computations, and

characterize system behavior.

1 INTRODUCTION

All programming methodologies provide some kind
of support for separation of concerns, which entails
breaking down a program into distinct parts that over-
lap in functionality as little as possible. The structured
and object-oriented programming paradigms resort to
procedures and classes, respectively, to encapsulate
concerns into single entities and thus achieve some
separation of concerns. However, some concerns
defy these forms of encapsulation and lead to tangled,
difficult-to-maintain code, since they cut across multi-
ple modules in a program. Aspect-oriented program-
ming overcomes this problem by enabling develop-
ers to express these cross-cutting concerns separately
(Kiczales et al., 1997).

In this paper, we employ aspect-oriented software
development techniques for solving a common prob-
lem programmers must face in the development of
complex systems; namely, the fine-grained evaluation
and monitoring of system performance. Aspects let
developers dig into their system at leisure. Since as-
pects provide an unintrusive way to tuck probes into
their system, developers do not have to tweak their
underlying system implementation for enabling sys-
tem monitoring. As keen observers, they can study
system performance without inadvertently introduc-

ing subtle errors nor degrading actual system perfor-
mance in a production environment (aspects can eas-
ily be removed once the performance evaluation has
taken place).

Our paper is organized as follows. Section 2 in-
troduces some of the fundamental concepts and terms
behind aspect-oriented software development. Sec-
tion 3 describes how cross-cutting concerns, or as-
pects, can be specified using the Aspect] extension to
the Java programming language. Section 4 presents a
case study on the evaluation of the I/O performance
of some well-known data mining techniques. Finally,
Section 5 concludes our paper by summarizing the re-
sults of our study.

2 ASPECT-ORIENTED
SOFTWARE DEVELOPMENT

Aspect-oriented programming (AOP), in par-
ticular, and aspect-oriented software development
(AOSD), in general, has been identified as a promis-
ing area of research in programming languages and
software engineering (Kiczales, 1996). AOSD tech-
niques attempt to improve system modularization by
the explicit identification of cross-cutting concerns.



Cross-cutting concerns are aspects of a program
which affect, or crosscut, other concerns. These con-
cerns have a clear purpose, yet they often cannot be
cleanly decomposed from the rest of the system, and
usually result in tangled code that is notoriously hard
to maintain.

Logging offers the quintessential example of a
crosscutting concern, since a logging strategy neces-
sarily affects every single logged part of the system.
Logging thereby crosscuts all logged system modules
(classes and methods in an object-oriented implemen-
tation).

The implementation of such concerns using con-
ventional programming techniques introduces some
problems, since it introduces redundant code (i.e. the
same fragment of code typically appears in many dif-
ferent places). This redundant code makes it difficult
to reason about the (non-explicit) structure of soft-
ware systems. It also makes software more difficult
to change because developers have to find all the scat-
tered code that might be involved and they must en-
sure that changes are consistently applied.

AOSD builds on the object-oriented paradigm
and streamlines complex systems development with-
out sacrificing flexibility or scalability (Filman et al.,
2004).

Some key AOSD terms include:

e Cross-cutting concerns: Those design decisions
whose implementation is scattered throughout the
code, resulting in tangled code that is excessively
difficult to develop and maintain (Kiczales et al.,
1997).

e Advice: The additional code that you want to ap-
ply to your existing implementation at different
places.

e Point-cut: The point of execution in the applica-
tion at which a cross-cutting concern needs to be
applied.

e Aspect: The combination of the point-cut and the
advice

Aspect-oriented programming addresses those sit-
uation when neither procedural nor object-oriented
programming techniques are sufficient to clearly cap-
ture some of the important design decisions the pro-
gram must implement. AOP makes it possible to
clearly express programs involving such aspects, in-
cluding appropriate isolation, composition and reuse
of the aspect code (Kiczales et al., 1997). AOP allows
design and code to be structured to reflect the way de-
velopers want to think about the system (Elrad et al.,
2001).

AQOSD State of the Art

AOSD has drawn the attention of many researchers
and it has also found early adopters in middleware
products (Colyer et al., 2005), such as some commer-
cial Java application servers.

Some researchers have turned their attention to
earlier phases of the software lifecycle. For instance,
Ivar Jacobson believes that use-case driven develop-
ment and AOP complement each other very well: as
early aspects, use cases are key to effectively sepa-
rate concerns (Jacobson and Ng, 2004). This point
of view has led to recent research on aspect-oriented
requirements engineering, or AORE (Moreira et al.,
2005) (Chitchyan et al., 2007).

Other researchers advocate for using aspects in the
architectural description of software systems (Shom-
rat and Yehudai, 2002) (Boucké and Holvoet, 2006).
In fact, architectural viewpoints and perspectives lend
themselves to be interpreted as cross-cutting con-
cerns, albeit at a higher abstraction level than tradi-
tional AOP aspects: “An architectural perspective is
a collection of activities, tactics, and guidelines that
are used to ensure that a system exhibits a particular
set of related quality properties that require consid-
eration across a number of the systems architectural
views” (Rozanski, 2005).

Many AOSD concepts, tools, techniques, develop-
ment best practices, and early application experiences
are described in (Filman et al., 2004).

3 SPECIFYING CROSS-CUTTING
CONCERNS WITH ASPECT)J

The main idea behind AOP is therefore to cap-
ture the structure of crosscutting concerns explicitly,
since these concerns are inherent to complex software
systems but their implementation using conventional
programming techniques leads to poorly-structured
software. AOP languages provide a way to specify
such concerns in a well-modularized way.

Gregor Kiczales started and led the Xerox PARC
team that eventually developed Aspect] (Kiczales
et al., 2001). Aspect] is an aspect-oriented extension
for the Java programming language. Aspect] is avail-
able as an Eclipse Foundation open-source project,
and it has become the de-facto standard for AOP.

All AOP languages include some constructs that
encapsulate crosscutting concerns in one place. The
difference between AOP languages lies in the con-
structs they provide for modularizing the system-wide
concerns. Aspect] encapsulates them in a special



class, an aspect, which is declared as a Java class us-
ing the aspect keyword:

public aspect DatasetScan
{

// ... aspect implementation details ...

}

Aspects in Aspect] define crosscutting types com-
prised of advices, user-defined pointcuts, and the
usual field, constructor and method declarations of a
Java class.

Pointcuts pick out sets of join points and exposes
data from the execution context of those join points.
Those join points are defined in terms of “points in
the execution” of Java programs. For instance, the
following pointcut

pointcut move():
call (void Figure.setX(int))
|| call(void Figure.setY(int));

picks out each join point that is a call to setX or
setY, the two methods that can be used to move a
Figure in our system.

An advice defines the additional action to take at
join points in a pointcut. It brings together pointcuts
(join points) and code (to be run at each of those join
points). Aspect] has several different kinds of advice:

before() : move() {
System.out.println("about to move");

}

after(): move() {
System.out.println("just moved");

}

In the first example, the before advice runs as
a join point is reached, before the program proceeds
with the join point. In the second one, the after ad-
vice on a particular join point runs after the program
proceeds with that join point, just before control is re-
turned to the caller.

Aspect] aspects can therefore alter the behavior
of the base code (the non-aspect part of a program)
by applying advice (additional behavior) at various
join points specified by pointcuts. For those al-
ready familiar with current relational database man-
agement systems, we could say that Aspect] provides
for object-oriented programs what triggers do for re-
lational databases.

The complete details of the Aspect] language are
covered in several programming handbooks (Laddad,
2003) (Gradecki and Lesiecki, 2003). In those books,
interested readers can find complete Aspect] solu-
tions to implement crosscutting concerns such as log-
ging, policy enforcement, resource pooling, business
rules, thread-safety, authentication and authorization,
as well as transaction management.

4 ON THE I/O PERFORMANCE
OF DIFFERENT DATA MINING
ALGORITHMS

In Data Mining applications, CPU time is not the only
relevant factor to be considered when evaluating com-
peting alternatives. A more in-depth analysis of the
performance of those alternatives is usually needed to
evaluate their scalability, i.e. their ability to cope with
ever increasing data volumes.

4.1 Instrumenting a Component-Based
Data Mining Framework

We will now proceed to describe how we can equip a
data mining framework written in Java with the nec-
essary instruments for measuring and recording the
number of I/0 operations performed by a data mining
algorithm. Later, we will show some experimental
results we have obtained with the help of this instru-
mentation.

First of all, we must intercept component creation
calls. In a typical object-oriented framework, compo-
nent creation can be performed by directly invoking
the corresponding constructor or by resorting to the
reflection capabilities included within modern pro-
gramming platforms.

Let us suppose that we are interested in tracking
the creation of classifiers in our framework, regard-
less of their particular type. Since the Classifier
class is the base class for all classifiers in our system,
the following Aspect] snippet inserts the appropriate
advice after every call to any constructor of any of the
subclasses of the Classifier class:

after() returning (IMinerComponent component)
. call( Classifier+.new(..) ) {
addDynamicPort (component) ;

}

Please note how the Classifiert+.new(..) ex-
pression above defines a pointcut for the after()
returning advice. This pointcut includes as join
points all constructor calls to any constructor (the ..
wildcard) of any classifier subclass (the + suffix).

We can also deal with reflective object in-
stantiation by intercepting calls to the Java
Class.newInstance  method:

after() returning (Cbject object)
: call( Object Class.newInstance() ) {
if (object instanceof Classifier) {
addDynamicPort ( (IMinerComponent) object) ;
}



In both cases, we use Aspect] after()
returning advice in order to obtain a reference
to the newly created component. Using this refer-
ence, we can employ the infrastructure provided by
our data mining framework to attach a dynamic port
to such new component; i.e. a hook where we will
store the performance measurements our aspect will
perform.

For instance, we might be interested in counting
how many times our data mining algorithm has to read
its training data. We could do it just by using a counter
that is reset when we start the classifier training phase
(when we call its build method) and is incremented
each time we access a dataset while we are building
the classifier (i.e. when we open it):

// Reset counter before classifier construction

before() :
call (void Classifier+.build()) {
// ... reset counter ...

}

// Dataset scan: Increment counter

before (Dataset ds):
call (void Dataset+.open()) && target(ds) {
// ... counter++ ...

We can easily evaluate the I/O performance of
any algorithm just by using aspects written as above.
Our aspect-oriented performance evaluation approach
provides three main benefits with respect to more in-
trusive techniques we could have used:

e First, using our approach, we do not need to mod-
ify the source code of the algorithm under test (in
fact, we do not even need to have access to its
source code).

e Second, since we do not touch the code of the
underlying system, we do not inadvertently intro-
duce subtle bugs in its implementation (nor in the
measurement code itself, since it is automatically
woven by the Aspect] compiler).

e Third, the experimenter can easily adjust the mea-
surements she wants to obtain, just by tweaking
the aspect code to add as many dynamic ports to
her components. This would be extremely hard to
do if she had to fine-tune the underlying system
source code. Moreover, our data mining frame-
work is designed so that measurements attached
to a component via its dynamic ports are automat-
ically analyzed by the framework reporting capa-
bilities, requiring no additional effort on her part.
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Figure 1: I/O cost for different algorithms in terms of the
number of records fetched during the training process.

4.2 [Experimental Results

We will now illustrate the kind of results we can easily
obtain using our aspect-oriented performance evalua-
tion approach.

We have used thirteen different datasets taken
from the UCI Machine Learning Repository (Blake
and Merz, 1998) for the construction of different
kinds of classifiers:

e An associative classifier, ART, whose acronym
stands for Association Rule Tree (Berzal et al.,
2004).

A well-known algorithm for the construction of
decision trees: Quinlan’s C4.5 (Quinlan, 1993), a
derivative from ID3 (Quinlan, 1986).

Two variants of CN2, a rule learner (Clark and
Boswell, 1991) (Fiirnkranz and Widmer, 1994).

A decision list learner called RIPPER (Cohen,
1995), and

A simple Bayesian classifier, Naive Bayes, to be
used as a point of reference since its construc-
tion requires just a single sequential scan over the
whole training dataset (its I/O cost is optimal).

Figures 1 through 3 illustrate the I/O costs associ-
ated to each learning algorithm we have tested.

If we evaluated these different algorithms just by
measuring the CPU time required to build the classi-
fiers for the UCI datasets, we could draw the wrong
conclusions with respect to which methods might be
better suited for real-world databases. The actual
number of I/O operations might be a better indicator
of real-world performance (see Figure 1).

Associative classifiers, such as ART, internally
use efficient association rule mining techniques to
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Figure 2: Number of times a dataset is sequentially scanned
during classifier construction. It should be noted that the
scanned dataset is only a fraction of the whole training
dataset once the classification model has been partially
built.

build classification models. When working with rela-
tively small datasets, such as those from the UCI, this
introduces a significant overhead that could make us
think they are not suitable for real-world scenarios.

In fact, ART requires more CPU time than the tra-
ditional C4.5 decision tree learner. This is due, among
other things, to the fact that ART searches in a larger
solution space than C4.5: it looks for multi-variate
splits while C4.5 is just a greedy algorithm that looks
for the best single variable that can be used to split the
training set at each node of the decision tree.

As other decision list and rule inducers, ART con-
straints the rule size to efficiently bound its search
space. However, ART can be an order of magnitude
faster than CN2 or RIPPER just because of its search
strategy. Where previous rule inducers discover one
rule at a time, ART directly looks for sets of rules,
thus reducing the number of database scans it must
perform to evaluate candidate solutions (see Figure
2). These differences could be dramatically exacer-
bated when the training dataset does not fit into main
memory, a typical situation in data mining scenarios.

ART I/O performance is bound by the resulting
classifier complexity, as decision tree learners. Since
ART search strategy is designed to lead to compact
classifiers, the final number of dataset scans required
by ART is even smaller that the number of scans re-
quired by our efficient RainForest-like implementa-
tion of C4.5 (Gehrke et al., 2000). Our decision tree
learner performs two dataset scans at each internal
node of the decision tree: one to collect the statis-
tics which are necessary to evaluate alternative splits,
another to branch the tree. Decision list and rule in-
ducers, on their hand, perform one dataset scan for
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Figure 3: Number of disk pages read by each algorithm for
different page sizes. The page size indicates the number of
training examples each page contains.

each formulated hypothesis, which creates a large I/O
bottleneck when datasets do not to fit into main mem-
ory.

We have also measured the number of disk pages
read by each algorithm for different page sizes, as
shown in Figure 3. This quantity can serve as a strong
indicator of the algorithms scalability. C4.5 follows
a recursive top-down strategy which fragments the
training dataset into disjunct subsets, hence the non-
linearity is shown in Figure 3. On the other hand,
since ART, CN2, and RIPPER are iterative algo-
rithms, the number of disk pages read by any of those
algorithms proportionally decrease with the page size.
However, while ART 1/O cost is bound by the clas-
sifier complexity, CN2 and RIPPER performance is
determined by the search space they explore.

In summary, ART classifiers exhibit excellent
scalability properties, which make them suitable for
data mining problems. They provide a well-behaved
alternative to decision tree learners where rule and de-
cision list inducers do not work in practice.

S CONCLUSIONS

In this paper, we have described how aspect-oriented
programming techniques can be used to provide
elegant implementations of cross-cutting concerns.
While conventional structured and object-oriented
techniques would lead to poorly-structured systems,
aspect-orientation provides a well-modularized way
to specify system-wide concerns in a single place.
We have also shown how Aspect], an aspect-
oriented extension for the Java programming lan-
guage, can be used in real-world applications to pro-
vide fine-grained performance evaluation and moni-



toring capabilities. Moreover, the approach proposed
in this paper does not need the underlying source code
to be modified. This unintrusive technique avoids the
inadvertent insertion of bugs into the system under
evaluation. It also frees developers from the burden
of introducing scattered code to do their performance
evaluation and monitoring work.

Finally, we have described how our proposed ap-
proach can be employed for evaluating the I/O cost
associated to some data mining techniques. In our ex-
periments, we have witnessed how associative clas-
sifiers such as ART possess good scalability proper-
ties. In fact, the efficient association rule mining algo-
rithms underlying ART make it orders of magnitude
more efficient than alternative rule and decision list
inducers, whose I/O requirements heavily constrain
their use in real-world situations unless sampling is
employed. Moreover, we have confirmed that the ad-
ditional cost required by ART, when compared to de-
cision tree learners such as C4.5, is reasonable if we
take into account the desirable properties of the clas-
sification models it helps us obtain, thus making of
associative classifiers a viable alternative to standard
decision tree learners, the most common classifiers in
data mining tools nowadays.
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