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Abstract

Association rules have become an important paradigm
in knowledge discovery. Nevertheless, the huge number of
rules which are usually obtained from standard datasets
limits their applicability. In order to solve this problem,
several solutions have been proposed, as the definition of
subjective measures of interest for the rules or the use of
more restrictive accuracy measures. Other approaches try
to obtain different kinds of knowledge, referred to as pe-
culiarities, infrequent rules, or exceptions. In general, the
latter approaches are able to reduce the number of rules de-
rived from the input dataset. This paper is focused on this
topic. We introduce a new kind of rules, namely, anomalous
rules, which can be viewed as association rules hidden by
a dominant rule. We also develop an efficient algorithm to
find all the anomalous rules existing in a database.

1. Introduction

Association rules have proved to be a practical tool in
order to find tendencies in databases, and they have been
extensively applied in areas such as market basket analy-
sis and CRM (Customer Relationship Management). These
practical applications have been made possible by the devel-
opment of efficient algorithms to discover all the association
rules in a database [11, 12, 4], as well as specialized parallel
algorithms [1]. Related research on sequential patterns [2],
associations varying over time[17], and associative classifi-
cation models [5] have fostered the adoption of association
rules in a wide range of data mining tasks.

Despite their proven applicability, association rules have
serious drawbacks limiting their effective use. The main
disadvantage stems from the large number of rules obtained
even from small-sized databases, which may result in a
second-order data mining problem. The existence of a large
number of association rules makes them unmanageable for
any human user, since she is overwhelmed with such a huge

set of potentially useful relations. This disadvantage is a di-
rect consequence of the type of knowledge the association
rules try to extract, i.e, frequent and confident rules. Al-
though it may be of interest in some application domains,
where the expert tries to find unobserved frequent patters, it
is not when we would like to extract hidden patterns.

It has been noted that, in fact, the occurrence of a fre-
quent event carries less information than the occurrence of
a rare or hidden event. Therefore, it is often more interest-
ing to find surprising non-frequent events than frequent ones
[7, 27, 25]. In some sense, as mentioned in [7], the main
cause behind the popularity of classical association rules is
the possibility of building efficient algorithms to find all the
rules which are present in a given database.

The crucial problem, then, is to determine which kind
of events we are interested in, so that we can appropri-
ately characterize them. Before we delve into the details,
it should be stressed that the kinds of events we could be
interested in are application-dependent. In other words,
it depends on the type of knowledge we are looking for.
For instance, we could be interested in finding infrequent
rules for intrusion detection in computer systems, excep-
tions to classical associations for the detection of conflict-
ing medicine therapies, or unusual short sequences of nu-
cleotides in genome sequencing.

Our objective in this paper is to introduce a new kind of
rule describing a type of knowledge we might me interested
in, what we will call anomalous association rules hence-
forth. Anomalous association rules are confident rules rep-
resenting homogeneous deviations from common behavior.
This common behavior can be modeled by standard asso-
ciation rules and, therefore, it can be said that anomalous
association rules are hidden by a dominant association rule.

2. Motivation and related work

Several proposals have appeared in the data mining lit-
erature that try to reduce the number of associations ob-
tained in a mining process, just to make them manageable



by an expert. According to the terminology used in [6],
we can distinguish between user-driven and data-driven ap-
proaches, also referred to as subjective and objective inter-
estingness measures, respectively [21].

Let us remark that, once we have obtained the set of good
rules (considered as such by any interestingness measure),
we can apply filtering techniques such as eliminating redun-
dant tuples [19] or evaluating the rules according to other
interestingness measures in order to check (at least, in some
extent) their degree of surprisingness, i.e, if the rules convey
new and useful information which could be viewed as unex-
pected [8, 9, 21, 6]. Some proposals [13, 25] even introduce
alternative interestingness measures which are strongly re-
lated to the kind of knowledge they try to extract.

In user-driven approaches, an expert must intervene in
some way: by stating some restriction about the potential
attributes which may appear in a relation [22], by impos-
ing a hierarchical taxonomy [10], by indicating potential
useful rules according to some prior knowledge [15], or
just by eliminating non-interesting rules in a first step so
that other rules can automatically be removed in subsequent
steps [18].

On the other hand, data-driven approaches do not re-
quire the intervention of a human expert. They try to au-
tonomously obtain more restrictive rules. This is mainly
accomplished by two approaches:

a) Using interestingness measures differing from the
usual support-confidence pair [14, 26].

b) Looking for other kinds of knowledge which are not
even considered by classical association rule mining
algorithms.

The latter approach pursues the objective of finding sur-
prising rules in the sense that an informative rule has not
necessary to be a frequent one. The work we present here
is in line with this second data-driven approach. We shall
introduce a new kind of association rules that we will call
anomalous rules.

Before we briefly review existing proposals in order to
put our approach in context, we will describe the notation
we will use henceforth. From now on, X , Y , Z, and A

shall denote arbitrary itemsets. The support and confidence
of an association rule X ⇒ Y are defined as usual and they
will be represented by supp(X ⇒ Y ) and conf(X ⇒ Y ),
respectively. The usual minimum support and confidence
thresholds are denoted by MinSupp and MinConf , re-
spectively. A frequent rule is a rule with high support
(greater than or equal to the support threshold MinSupp),
while a confident rule is a rule with high confidence (greater
than or equal to the confidence threshold MinConf ). A
strong rule is a classical association rule, i.e, a frequent and
confident one.

[7, 20] try to find non-frequent but highly correlated
itemsets, whereas [28] aims to obtain peculiarities defined
as non-frequent but highly confident rules according to a
nearness measure defined over each attribute, i.e, a peculiar-
ity must be significantly far away from the rest of individ-
uals. [27] finds unusual sequences, in the sense that items
with low probability of occurrence are not expected to be
together in several sequences. If so, a surprising sequence
has been found.

Another interesting approach [13, 25, 3] consists of look-
ing for exceptions, in the sense that the presence of an at-
tribute interacting with another may change the consequent
in a strong association rule. The general form of an excep-
tion rule is introduced in [13, 25] as follows:

X ⇒ Y

XZ ⇒ ¬Y

X 6⇒ Z

Here, X ⇒ Y is a common sense rule (a strong rule).
XZ ⇒ ¬Y is the exception, where ¬Y could be a concrete
value E (the Exception [25]). Finally, X 6⇒ Z is a refer-
ence rule. It should be noted that we have simplified the
definition of exceptions since the authors use five [13] or
more [25] parameters which have to be settled beforehand,
which could be viewed as a shortcoming of their discovery
techniques.

In general terms, the kind of knowledge these exceptions
try to capture can be interpreted as follows:

X strongly implies Y (and not Z).
But, in conjunction with Z, X does not imply Y

(maybe it implies another E)

For example [24], if X represents antibiotics,
Y recovery, Z staphylococci, and E death,
then the following rule might be discovered: with the
help of antibiotics, the patient usually tends to
recover, unless staphylococci appear; in such a
case, antibiotics combined with staphylococci
may lead to death.

These exception rules indicate that there is some kind
of interaction between two factors, X and Z, so that the
presence of Z alters the usual behavior (Y ) the population
have when X is present.

This is a very interesting kind of knowledge which can-
not be detected by traditional association rules because the
exceptions are hidden by a dominant rule. However, there
are other exceptional associations which cannot be detected
by applying the approach described above. For instance, in
scientific experimentation, it is usual to have two groups of
individuals: one of them is given a placebo and the other
one is treated with some real medicine. The scientist wants
to discover if there are significant differences in both popu-
lations, perhaps with respect to a variable Y. In those cases,



where the change is significant, an ANOVA or contingency
analysis is enough. Unfortunately, this is not always the
case. What the scientist obtains is that both populations ex-
hibit a similar behavior except in some rare cases. These
infrequent events are the interesting ones for the scientist
because they indicate that something happened to those in-
dividuals and the study must continue in order to determine
the possible causes of this unusual change of behavior.

In the ideal case, the scientist has recorded the values of
a set of variables Z for both populations and, by perform-
ing an exception rule analysis, he could conclude that the
interaction between two itemsets X and Z (where Z is the
itemset corresponding to the values of Z) change the com-
mon behavior when X is present (and Z is not). However,
the scientist does not always keep records of all the rele-
vant variables for the experiment. He might not even be
aware of which variables are really relevant. Therefore, in
general, we cannot not derive any conclusion about the po-
tential changes the medicine causes. In this case, the use
of an alternative discovery mechanism is necessary. In the
next section, we present such an alternative which might
help our scientist to discover behavioral changes caused by
the medicine he is testing.

3. Defining anomalous association rules

An anomalous association rule is an association rule that
comes to the surface when we eliminate the dominant effect
produced by a strong rule. In other words, it is an associa-
tion rule that is verified when a common rule fails.

In this paper, we will assume that rules are derived from
itemsets containing discrete values.

Formally, we can give the following definition to anoma-
lous association rules:

Definition 1 Let X , Y , and A be arbitrary itemsets. We say
that X  A is an anomalous rule with respect to X ⇒ Y ,
where A denotes the Anomaly, if the following conditions
hold:

a) X ⇒ Y is a strong rule (frequent and confident)

b) X¬Y ⇒ A is a confident rule

c) XY ⇒ ¬A is a confident rule

In order to emphasize the involved consequents, we will also
used the notation X  A|¬Y , which can be read as:
”X is associated with A when Y is not present”

It should be noted that, implicitly in the definition, we
have used the common minimum support (MinSupp) and
confidence (MinConf ) thresholds, since they tell us which
rules are frequent and confident, respectively. For the sake
of simplicity, we have not explicitly mentioned them in the

definition. A minimum support threshold is relevant to con-
dition a), while the same minimum confidence threshold is
used in conditions a), b), and c).

The semantics this kind of rules tries to capture is the
following:

X strongly implies Y ,
but in those cases where we do not obtain Y ,

then X confidently implies A

In other words:

When X , then
we have either Y (usually) or A (unusually)

Therefore, anomalous association rules represent homo-
geneous deviations from the usual behavior. For instance,
we could be interested in situations where a common rule
holds:

if symptoms-X then disease-Y

Where the rule does not hold, we might discover an in-
teresting anomaly:

if symptoms-X then disease-A
when not disease-Y

If we compare our definition with Hussain and Suzuki’s
[13, 25], we can see that they correspond to different se-
mantics. Attending to our formal definition, our approxima-
tion does not require the existence of the conflictive itemset
(what we called Z when describing Hussain and Suzuki’s
approach in the previous section). Furthermore, we impose
that the majority of exceptions must correspond to the same
consequent A in order to be considered an anomaly.

In order to illustrate these differences, let us consider
the relation shown in Figure 1, where we have selected
those records containing X . From this dataset, we obtain
conf(X ⇒ Y ) = 0.6, conf(XZ ⇒ ¬Y ) = conf(XZ ⇒
A) = 1, and conf(X ⇒ Z) = 0.2. If we suppose that
the itemset XY satisfies the support threshold and we use
0.6 as confidence threshold, then “XZ ⇒ A is an excep-
tion to X ⇒ Y , with reference rule X ⇒ ¬Z”. This
exception is not highlighted as an anomaly using our ap-
proach because A is not always present when X¬Y . In fact,
conf(X¬Y ⇒ A) is only 0.5, which is below the minimum
confidence threshold 0.6. On the other hand, let us consider
the relation in Figure 2, which shows two examples where
an anomaly is not an exception. In the second example, we
find that conf(X ⇒ Y ) = 0.8, conf(XY ⇒ ¬A) = 0.75,
and conf(X¬Y ⇒ A) = 1. No Z-value exists to originate
an exception, but X  A|¬Y is clearly an anomaly.

The table in Figure 1 also shows that when the number
of variables (attributes in a relational database) is high, then
the chance of finding spurious Z itemsets correlated with



X Y A4 Z3 · · ·
X Y A1 Z1 · · ·
X Y A2 Z2 · · ·
X Y A1 Z3 · · ·
X Y A2 Z1 · · ·
X Y A3 Z2 · · ·
X Y1 A4 Z3 · · ·
X Y2 A4 Z1 · · ·
X Y3 A Z · · ·
X Y4 A Z · · ·

· · ·

Figure 1. A is an exception to X ⇒ Y when Z,
but that anomaly is not confident enough to
be considered an anomalous rule.

¬Y notably increases. As a consequence, the number of
rules obtained can be really high (see [25, 23] for empirical
results). The semantics we have attributed to our anomalies
is more restrictive than exceptions and, thus, when the ex-
pert is interested in this kind of knowledge, then he will ob-
tain a more manageable number of rules to explore. More-
over, we do not require the existence of a Z explaining the
exception.

X Y Z1 · · ·
X Y Z2 · · ·
X Y Z · · ·
X Y Z · · ·
X Y Z · · ·
X Y Z · · ·
X A Z · · ·
X A Z · · ·
X A Z · · ·
X A Z · · ·

· · ·

X Y A1 Z1 · · ·
X Y A1 Z2 · · ·
X Y A2 Z3 · · ·
X Y A2 Z1 · · ·
X Y A3 Z2 · · ·
X Y A3 Z3 · · ·
X Y A Z · · ·
X Y A Z · · ·
X Y3 A Z · · ·
X Y4 A Z · · ·

· · ·

Figure 2. X  A|¬Y is detected as an anoma-
lous rule, even when no exception can be
found through the Z-values.

In particular, we have observed that users are usually
interested in anomalies involving one item in their con-
sequent. A more rational explanation of this fact might
have psychological roots: As humans, we tend to find more
problems when reasoning about negated facts. Since the
anomaly introduces a negation in the rule antecedent, ex-
perts tend to look for ‘simple’ understandable anomalies in

order to detect unexpected facts. For instance, an expert
physician might directly look for the anomalies related to
common symptoms when these symptoms are not caused
by the most probable cause (that is, the usual disease she
would diagnose). The following section explores the imple-
mentation details associated to the discovery of such kind
of anomalous association rules.

4. Discovering anomalous association rules

Given a database, mining conventional association rules
consists of generating all the association rules whose sup-
port and confidence are greater than some user-specified
minimum thresholds. We will use the traditional decom-
position of the association rule mining process to obtain all
the anomalous association rules existing in the database:

• Finding all the relevant itemsets.

• Generating the association rules derived from the
previously-obtained itemsets.

The first subtask is the most time-consuming part and
many efficient algorithms have been devised to solve it in
the case of conventional association rules. For instance,
Apriori-based algorithms are iterative [16]. Each iteration
consists of two phases. The first phase, candidate gener-
ation, generates potentially frequent k-itemsets (Ck) from
the previously obtained frequent (k-1)-itemsets (Lk−1). The
second phase, support counting, scans the database to find
the actual frequent k-itemsets (Lk). Apriori-based algo-
rithms are based on the fact that that all subsets of a frequent
itemset are also frequent. This allows for the generation of
a reduced set of candidate itemsets. Nevertheless, it should
be noted that the there is no actual need to build a candidate
set of potentially frequent itemsets [11].

In the case of anomalous association rules, when we say
that X  A|¬Y is an anomalous rule, that means that the
itemset X ∪ ¬Y ∪ A appears often when the rule X ⇒ Y

does not hold. Since it represents an anomaly, by defini-
tion, we cannot establish a minimum support threshold for
X ∪ ¬Y ∪ A, in the same sense than a strong rule. In
fact, an anomaly is not usually very frequent in the whole
database. Therefore, standard association rule mining al-
gorithms, exploiting the classical Apriori support pruning,
cannot be used to detect anomalies without modification.

Given an anomalous association rule X  A|¬Y , let us
denote by R the subset of the database that, containing X ,
does not verify the association rule X ⇒ Y . In other words,
R will be the part of the database that does not verify the
rule and might host an anomaly. The anomalous association
rule confidence will be, therefore, given by the following
expression:



confR(X  A|¬Y ) =
suppR(X ∪ A)

suppR(X)

When we write suppR(X), it actually represents
supp(X ∪ ¬Y ) in the complete database. Although this
value is not usually computed when obtaining the itemsets,
it can be easily computed as supp(X)−supp(X∪Y ). Both
values in this expression are always available after the con-
ventional association rule mining process, since both X and
X ∪ Y are frequent itemsets.

Applying the same reasoning, the following expression
can be derived to represent the confidence of the anomaly
X  A|¬Y :

confR(X  A|¬Y ) =
supp(X ∪ A) − supp(X ∪ Y ∪ A)

supp(X) − supp(X ∪ Y )

Fortunately, when somebody is looking for anomalies,
he is usually interested in anomalies involving individual
items. We can exploit this fact by taking into account that,
even when X ∪ A and X ∪ Y ∪ A might not be frequent,
they are extensions of the frequent itemsets X and X ∪ Y ,
respectively.

Since A will represent individual items, our problem re-
duces to being able to compute the support of L ∪ i, for
each frequent itemset L and item i potentially involved in
an anomaly.

Therefore, we can modify existing iterative association
rule mining algorithms to efficiently obtain all the anoma-
lies in the database by modifying the support counting phase
to compute the support for frequent itemset extensions:

• Candidate generation: As in any Apriori-based al-
gorithm, we generate potentially frequent k-itemsets
from the frequent itemsets of size k − 1.

• Database scan: The database is read to collect the in-
formation needed to compute the rule confidence for
potential anomalies. This phase involves two parallel
tasks:

– Candidate support counting: The frequency of
each candidate k-itemset is obtained by scanning
the database in order to obtain the actual frequent
k-itemsets.

– Extension support counting: At the same time
that candidate support is computed, the fre-
quency of each frequent k − 1-itemset extension
can also be obtained.

Once we obtain the last set of frequent itemsets, an addi-
tional database scan can be used to compute the support for
the extensions of the larger frequent itemsets.

Using a variation of an standard association rule min-
ing algorithm as TBAR [4], nicknamed ATBAR (Anomaly
TBAR), we can efficiently compute the support for each fre-
quent itemset as well as the support for its extensions.

In order to discover existing anomalies, a tree data struc-
ture is built to store all the support values needed to check
potential anomalies. This tree is an extended version of the
typical itemset tree used by algorithms like TBAR [4]. The
extended itemset tree stores the support for frequent item-
set extensions as well as for all the frequent itemsets them-
selves. Once we have these values, all anomalous associ-
ation rules can be obtained by the proper traversal of this
tree-shaped data structure.

5. Pruning and summarizing rules

Deriving anomalous association rules without imposing
some constraints is meaningless. We introduce some gen-
eral criteria which can be divided into two groups: a priori
and a posteriori.

A priori pruning criteria. (Restrictions imposed before
proceeding to the construction of the itemset tree)

• Do not allow an attribute with only two differ-
ent values to appear in the anomalous consequent
part of the rule. In general, attributes appearing in
the anomalous consequents, should have at least
three or four distinct values.

• Null values should not appear in the anomalous
consequent part of a rule, but they could appear
in the strong part. A strong rule with a null conse-
quent but a non-null anomalous consequent could
provide useful information to the user.

A posteriori pruning criteria. (Criteria imposed once the
set of anomalous rules is construted)

• Eliminate those rules sharing the same strong
and anomalous consequent, and having more an-
tecedents. In this case, the simplest rule is in-
cluded and the others are pruned.

If there exists an anomalous rule
X  A|¬Y , then every anomalous rule
XH  A|¬Y is pruned.

• Do not allow anomalies supported by just one or
two records. Thus, a support threshold for the
anomaly should be considered. A minimum sup-
port of three records might be choosen.

If supp(XA) < 3, then X  A|¬Y is
pruned.



Confidence 90% Confidence 75%
DataBase Ant. MinSupp Anom. Anom. Assoc. Reduct. Anom. Anom. Assoc. Reduct.

Size Prun. Prun.
HEPATITIS 1 10% 4 61 131 97% 57 229 398 86%

5% 4 63 137 97% 70 253 427 84%
1% 4 63 238 98% 70 398 561 88%

2 10% 11 901 1639 99% 222 3029 3820 94%
5% 11 1806 3249 99% 310 7017 7352 96%
1% 11 1806 12406 100% 310 13496 18836 98%

BREAST- 1 10% 0 0 9 100% 1 2 43 98%
CANCER 5% 0 2 12 100% 2 5 61 97%

1% 0 2 24 100% 2 35 89 98%
2 10% 3 11 62 95% 27 50 265 90%

5% 3 55 146 98% 44 146 485 91%
1% 3 85 736 100% 50 574 1423 96%

WISCONSIN- 1 10% 1 2 29 97% 1 2 80 99%
BREAST- 5% 1 13 43 98% 4 19 117 97%
CANCER 1% 1 47 70 99% 15 121 170 91%

2 10% 7 63 183 96% 33 100 427 92%
5% 16 163 313 95% 71 248 688 90%
1% 19 600 936 98% 117 1634 1811 94%

POSTOPERATIVE 1 10% 0 0 14 100% 3 5 29 90%
5% 0 0 14 100% 3 6 30 90%
1% 0 0 43 100% 3 6 59 95%

2 10% 0 11 87 100% 2 37 206 99%
5% 0 11 123 100% 2 57 310 99%
1% 0 11 586 100% 2 64 792 100%

CONTRACEPTIVE 1 10% 0 0 32 100% 3 3 76 96%
5% 0 0 34 100% 3 3 84 96%
1% 0 0 36 100% 3 3 87 97%

2 10% 4 7 132 97% 9 34 253 96%
5% 16 32 311 95% 49 131 612 92%
1% 17 65 527 97% 106 314 1114 90%

PIMA DIABETES 1 10% 0 0 36 100% 0 0 49 100%
5% 0 0 36 100% 0 0 49 100%
1% 0 0 36 100% 0 0 49 100%

2 10% 0 2 45 100% 4 12 54 93%
5% 1 25 185 99% 17 124 232 93%
1% 1 141 543 100% 77 691 834 91%

Table 1. Number of rules obtained after pruning



These pruning methods should be applied to eliminate
spurious and trivial anomalous rules. The application of
these simple criteria can dramatically decrease the number
of outputs as Table 1 shows (see description of Table 1 in
next section). Once the reduced set of rules is obtained,
summarizing and ranking measures could also be applied.
Such measures should be applied once the whole set of
pruned rules are discovered. The particular measures used
for a particular problem might depend on specific domain
knowledge. Some criteria are:

Summarizing criteria help us to merge several rules into
a single one.

For instance, we can merge several rules with the same
pair of strong and anomalous consequents in the fol-
lowing way:

All the anomalous rules Xi  A|¬Y , could be
merged into one single rule (∨iXi) A|¬Y ,
where ∨ stands for the logical or.

This summarizing method is aimed at presenting a
simple set of rules to the user. Obviously, the confi-
dence and support values can not be merged and, there-
fore, the individual rules should still be stored in case
the user wanted to analyze them.

Let us note that the greater the number of different Xi

are merged, the more confident we are that the negative
association between Y and A, is not related to those
Xi. For instance, Y could stand for Less than 18 years
and A for Has the car licence.

On the other hand, the first a posteriori pruning method
we introduced before could be rewritten as a sum-
marizing one, but following Occam’s razor we prefer
to consider the simplest rule, and thus eliminate (not
summarize) unnecessarily complex rules.

Ranking measures give a numerical value to the interest
of each rule. Some examples are:

• If an anomalous rule involves the same numeri-
cal attribute in the strong and in the anomalous
consequent part, then a ranking measure could
give more importance to those rules where such
intervals are not closed, because such rule would
detect very opposite behaviors.

• The more confident the rules X¬Y ⇒ A and
XY ⇒ ¬A are, the stronger the X  A|¬Y

anomaly is. This fact could be useful in order
to define a degree of strength associated to the
anomaly.

6. Experimental results

Table 1 presents some results obtained with ATBAR us-
ing datasets from the UCI Machine Learning Repository
(we focused our experimentation on medical datasets). As
motivated in Section 3, we only consider associations with
one consequent value. Numerical attributes are a priori clus-
tered in 5 intervals by using a classical equi-depth partition-
ing algorithm. Ant.Size represents the number of an-
tecedents. We restrict our experimentation to the case of one
and two antecedents. MinSupp is the support threshold (as
a percentage) for the strong rule. Confidence is the con-
fidence of the strong rule (as well as the confidence of the
anomaly), as stated in definition 1. Anom is the number of
anomalous rules. Anom.Prun. is the number of pruned
rules obtained by using the basic methods introduced in
Section 5 with four distinct values in each attribute (we
do not apply any ranking measure or summarizing criteria).
Assoc is the number of association rules satisfying the sup-
port (row) and confidence (column) thresholds. Reduct is
the reduction percentage of Anom Pruned with respect
to Assoc. It is worth mentioning that this percentage is
included only as a reference to the problem complexity, be-
cause anomalies and associations are not the same concept.

The need to obtain the support for frequent itemset ex-
tensions obviously incurs in some overhead, although it is
reasonable even for large datasets. The overhead in time is
about 20% in the experiments we have performed.

7. Conclusions and future work

In this paper, we have studied situations where standard
association rules do not provide the information the user
seeks. Anomalous association rules have proved helpful in
order to represent the kind of knowledge the user might be
looking for when analyzing deviations from normal behav-
ior. The normal behavior is modeled by conventional asso-
ciation rules, and the anomalous association rules are asso-
ciation rules which hold when the conventional rules fail.

We have also developed an efficient algorithm to mine
anomalies from databases. Our algorithm, ATBAR, is suit-
able for the discovery of anomalies in large databases. Our
approach could prove useful in tasks such as fraud identifi-
cation, intrusion detection systems and, in general, any ap-
plication where the user is not really interested in the most
common patterns, but in those patterns which differ from
the norm.

We intend to apply our technique to huge datasets as well
as to contrast the results with experts in order to evaluate
the false positive rate and analyze summarizing criteria in
depth, so more rules can be pruned.
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