;:‘ Machine Learning, 54, 67-92, 2004
' (© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

ART: A Hybrid Classification Model

FERNANDO BERZAL* fberzal @decsai.ugr.es
JUAN-CARLOS CUBERO* jc.cubero@decsai.ugr.es
DANIEL SANCHEZ daniel @decsai.ugr.es
JOSE MARIA SERRANO jmserrano@decsai.ugr.es

Dept. Computer Science and Al, University of Granada, Spain

Editor: Douglas Fisher

Abstract. This paper presents a new family of decision list induction algorithms based on ideas from the associ-
ation rule mining context. ART, which stands for ‘Association Rule Tree’, builds decision lists that can be viewed
as degenerate, polythetic decision trees. Our method is a generalized “Separate and Conquer” algorithm suitable
for Data Mining applications because it makes use of efficient and scalable association rule mining techniques.

Keywords: supervised learning, classification, decision lists, decision trees, association rules, Data Mining

1. Introduction

Classification is a major problem in Artificial Intelligence. The aim of any classification
algorithm is to build a classification model given some examples of the classes we are trying
to model. The model we obtain can then be used to classify new examples or simply to
achieve a better understanding of the available data.

In this paper, we present a new algorithm for building classifiers that can yield excellent
results from huge data sets found in data mining problems. To ensure good scalability,
we exploit association rule discovery methods to efficiently build a decision list, which
can be viewed as a degenerate, polythetic decision tree, hence its name ART (Association
Rule Tree). As any symbolic classification model, ART’s main strength is that it provides
understanding of and insight into the data.

Our method, as a decision list learner, is a generalized “Separate and Conquer” algorithm
(Pagallo & Haussler, 1995), in contrast to the standard “Divide and Conquer” algorithms
used to build decision trees. However, our induction process is faster than general decision
list and rule inducers which need to discover rules one at a time. As with decision tree
learners, ART is able to build classification models in an efficient and scalable way. More-
over, our classifiers tend to be smaller than the decision trees generated by standard TDIDT
approaches.

In the following section we introduce the learning techniques our method is based on.
Afterwards, we present a complete description of our classification model, whose intuitive

*Present address: Departamento de Ciencias de la Computacion e Inteligencia Artificial, ETS Ingenieria In-
formatica, Universidad de Granada, Granada 18071, Spain.

68 F. BERZAL ET AL.

parameters can be automatically adjusted. This is followed by experimental results that
show ART to be a competitive learning system in terms of accuracy and efficiency. A
notable advantage of ART is efficiency when data cannot reside in main memory. Finally,
we present our conclusions and pointers to future work.

2. Background
2.1. Rule learners and decision lists

There are many algorithms that induce sets of if - then rules directly from data. Some
algorithms perform a beam search through the space of hypotheses such as INDUCE or
AQ (Sestito & Dillon, 1994), as well as CN2 (Clark & Nibblett, 1989; Clark & Boswell,
1991) and CWS (Domingos, 1996). Genetic algorithms, such as REGAL (Giordana & Neri,
1996), also fall in this category.

Decision lists can be considered to be an extended if - then - else if-- - --else- rule.
In fact, k-DL (decision lists with conjunctive clauses of size at most k) are polynomially
learnable (Rivest, 1987). Although rule learning systems are computationally expensive,
more efficient algorithms exist for decision lists, e.g. IREP (Fiirnkranz & Widmer, 1994),
RIPPERKk (Cohen, 1995), and PNrule (Joshi, Agarwal, & Kumar, 2001). These algorithms
are incremental, in the sense that they add one rule at a time to the classification model they
build (usually through a “separate and conquer algorithm”). Some proposals, however, try
to discover the whole set of rules in a single search, e.g. BruteDL (Segal & Etzioni, 1994)
performs a depth-bound search of rules up to a certain length.

An alternative approach to obtain a set of if-then rules builds a decision tree using a
“divide and conquer” algorithm. Rules can be easily extracted from decision trees, and
there are methods, such as C4.5rules (Quinlan, 1993), which convert decision trees into
decision lists, simplifying the set of rules that are derived from the decision tree.

2.2. Decision trees

Decision trees, also known as classification or identification trees, probably constitute the
most popular and commonly-used classification model (e.g. see Quinlan, 1986b; Gehrke,
Loh, & Ramakrishnan, 1999b).

The knowledge obtained during the learning process is represented using a tree where
each internal node holds a question about one particular attribute (with one offspring per
possible answer) and each leaf is labelled with one of the possible classes.

A decision tree may be used to classify a given example beginning at the root and
following the path given by the answers to the questions at the internal nodes until a leaf is
reached.

Decision trees are typically built recursively following a top-down approach (from general
concepts to particular examples). That is the reason why the acronym TDIDT, which stands
for Top-Down Induction on Decision Trees, is used to refer to this kind of algorithm.

The TDIDT algorithm family includes classical algorithms such as CLS (Concept Learn-
ing System), ID3 (Quinlan, 1986a), C4.5 (Quinlan, 1993), and CART (Classification And

ART: A HYBRID CLASSIFICATION MODEL 69

Regression Trees) (Breiman et al., 1984), as well as more recent systems such as SLIQ
(Mehta, Agrawal, & Rissanen, 1996), SPRINT (Shafer, Agrawal, & Mehta, 1996), QUEST
(Loh & Shih, 1997), PUBLIC (Rastogi & Shim, 1998), RainForest (Gehrke &
Ramakrishnan, 1998) and BOAT (Gehrke et al., 1999a). Other decision tree classifiers
include BCT (Chan, 1989), which builds polythetic decision trees combining ideas from
ID3 and CN2, and TX2steps (Elder, 1995), which performs a lookahead in decision tree
construction.

2.3. Association rules

Association rule mining has been traditionally applied to databases of sales transactions
(referred to as basket data). In this kind of database, a transaction 7 is a set of items,
henceforth itemset, with a unique identifier and some additional information (e.g. date and
customer).

An association rule is an implication X = Y where X and Y are itemsets with empty
intersection (i.e. with no items in common). The intuitive meaning of such a rule is that the
transactions (or tuples) that contain X also tend to contain Y.

The confidence of an association rule X = Y is the proportion of transactions containing
X which also contain Y. The support of the rule is the fraction of transactions in the database
which contain both X and Y.

Given a database, association rule mining algorithms try to extract all the association
rules with support and confidence above user-specified thresholds, MinSupp and MinConf
respectively.

Many algorithms have been proposed to solve this problem, from the original proposals,
such as AIS (Agrawal, Imielinski, & Swami, 1993), SETM (Houtsma & Swami, 1993),
and, in particular, Apriori (Agrawal & Srikant, 1994), to more advanced algorithms such
as DHP (Park, Chen, & Yu, 1995), DIC (Brin et al., 1997), CARMA (Hidber, 1999),
FP-Growth (Han, Pei, & Yin, 2000), and TBAR (Berzal et al., 2001). See Hipp, Giintzer,
and Nakhaeizadeh (2000) for a recent survey of the problem and Han and Plank (1996) for
a somewhat older comparison of some selected algorithms.

2.4. Related work

Some fundamental differences exist between classification and association rule discovery
(Freitas, 2000). Association rules do not involve prediction, nor do they provide any mech-
anism to avoid underfitting and overfitting apart from the crude MinSupport user-specified
threshold. An inductive bias is also needed to solve classification problems, i.e. a basis for
favoring one hypothesis over another (e.g. Occam’s razor). This bias, like any other bias,
must be domain-dependent.

Association rules have, however, been used to solve classification problems directly. In
Ali, Manganaris, and Srikant (1997), association rules are used to build partial classifica-
tion models in domains where conventional classifiers would be ineffective. For example,
traditional decision trees are problematic when many values are missing and also when the
class distribution is very skewed.

70 F. BERZAL ET AL.

In Wang, Zhou, and He (2000) a tree of rules is built from an arbitrary set of as-
sociation rules without using an ad-hoc minimum support threshold. The authors have
observed that predictivity often depends on high confidence, and rules of high support
tend to have low confidence, so MinSupport pruning is not suitable for their classification
purposes.

CBA is an algorithm for building complete classification models using association rules
which was proposed in Liu, Hsu, and Ma (1998). In CBA [Classification Based on Asso-
ciations], all “class association rules” are extracted from the available training dataset (i.e.
all the association rules containing the class attribute in their consequent), and the most
adequate rules are selected to build an “associative classification model”, which uses a de-
fault class to make it complete. This classifier builder uses a brute-force exhaustive global
search, and yields excellent results when compared to C4.5. In Liu, Ma, and Wong (2000c),
CBA performance was “improved” allowing multiple minimum support thresholds for the
different problem classes and reverts to traditional TDIDT classifiers when no accurate rules
are found.

A similar strategy to that of CBA is used to classify text documents into topic hierarchies
in Wang, Zhou, and Liew (1999). All the generalized association rules with the class attribute
in their consequent are extracted, these rules are ranked, and some of them are selected to
build a classifier which takes context into account, since class proximity is important when
classifying documents into topics.

Hybrid approaches have also been suggested in the literature. LB (Meretakis & Wiithrich,
1999), which stands for “Large Bayes”, is an extended Naive Bayes classifier which uses
an Apriori-like frequent pattern mining algorithm to discover frequent itemsets with their
class support. This class support is an estimate of the probability of the pattern occurring
with a certain class. The proposed algorithm achieves good results. However, it lacks the
understandability of symbolic models such as decision trees.

Emerging patterns are itemsets whose support increases significantly from one dataset
to another (Dong & Li, 1999). They have been used to build classifiers following the LB
philosophy. For example, CAEP (Dong et al., 1999) finds all the emerging patterns meeting
some support and growth rate thresholds for each class. It then computes an aggregated
differentiating score to determine the most suitable class for a given instance. This com-
putation allows the algorithm to perform well when the class populations are unbalanced,
although it gives no further insight into the data.

Liu, Hu, and Hsu (2000a) propose the use of a hierarchical representation consisting of
general rules and exceptions in order to replace the usual flat representation model where
too many association rules hamper the understanding of the underlying data. The same
approach is followed in Liu, Hu, and Hsu (2000b) in order to obtain a good summary of the
knowledge contained in an arbitrary set of rules. In some way, ART takes a further step in
that direction, as we will see in the following sections.

3. ART classification model

Instead of discovering rules one at a time, as most decision list learners do, ART discov-
ers multiple rules simultaneously. ART builds partial classification models using sets of

ART: A HYBRID CLASSIFICATION MODEL 71

association rules. The instances in the input dataset which are not covered by the selected
association rules are then grouped together in ‘else’ branches to be further processed fol-
lowing the same algorithm.

3.1. Building the classifier

ART constructs a decision list using a greedy algorithm where each decision is not revoked
once it has been taken. Since it employs an association rule mining algorithm to efficiently
build partial classification models, it requires the typical user-specified thresholds used in
association rule mining, MinSupp (minimum support for the frequent itemsets) and MinConf
(minimum association rule confidence), although the latter can be omitted, as we shall see.
In ART, the minimum support threshold is a percentage of the current dataset size and it
implicitly restricts the tree branching factor. Therefore, primary or candidate keys in the
input dataset will never be selected by ART.

3.1.1. ART overview. The special kind of decision list ART obtains can be considered as a
degenerate, polythetic decision tree. Unlike most traditional TDIDT algorithms, ART is able
to use several attributes simultaneously to branch the decision tree. This ability improves the
performance of decision tree learning in terms of both higher prediction accuracy and lower
theory complexity (Zheng, 2000). An example of the degenerate decision trees or decision
lists formed by ART is shown in figure 2 (page 76). Note that the tree/list is composed
of sets of rules that share the same attributes. ART learns a set of such rules iteratively,
gradually piecing together the complete tree/list.

In our context, a good rule is an accurate rule, i.e. an association rule with a high enough
confidence value so that it can be helpful in order to build an accurate classifier. As we will
see in Section 3.1.3, the best set of good rules is the most promising set of rules according
to some preference criterion. In other words, it is the set of rules which best seems to serve
our purpose of building a predictive model (from a heuristic point of view, as is evident).
ART will choose such a set to grow the decision list.

In its quest for candidate hypotheses, ART begins by looking for simple association
rules such as {A;.q;} = {C.c;}, where A is an attribute, a is its value, C is the class
attribute and c is one of the problem classes. The attribute A with the best set of good
rules {A;.a;} = {C.c;} is then selected to branch the tree, corresponding to the next set of
same-attribute rules. A leaf node is generated for each good rule and all the data instances
not covered by any of these rules are grouped in an ‘else’ branch to be further processed in
the same way.

When no suitable association rules are found for any single attribute-value pair A.a,
ART looks for more complex association rules. It begins with rules of the form
{A1.a1 Ar.ax} = {C.c;}. If no good candidate rules are found, ART then searches for rules
with three attribute-value pairs in their antecedents, such as {A.a; Az.a; Az.a3} = {C.c;},
and so on. An upper bound on the size of the left-hand side (LHS) of the association rules
is then advisable to stop the search in the rare case when no suitable rules are found. This
parameter is designed as MaxSize and its maximum possible value equals the number of

72 F. BERZAL ET AL.

predictive attributes in the training dataset. In fact, this parameter can be set to that value
by default, unless the user explicitly changes it.

ART therefore begins by using simple hypotheses to classify the training data and makes
more complex hypothesis only when no simple hypotheses are found to work well. ART thus
incorporates an explicit preference for simpler models using Occam’s Razor as its inductive
bias. Despite recent criticisms about using Occam’s razor in the KDD field (Domingos,
1998, 1999), we believe Occam’s Razor is still appropiate for classification tasks. It should
be noted that an inductive bias is necessary for any classification task, since given a set
of observed facts, the number of hypotheses that imply these facts is potentially infinite
(Freitas, 2000).

A pseudo-code description of the ART algorithm is sketched in figure 1.

function ART (data, MaxSize, MinSupp, MinConf): classifier;

// data: Training dataset

// MaxSize: Mazimum LHS itemset size

// (default value = number of predictive attributes)
// MinSupp: Minimum support threshold

// (default value = 0.05 = 5%)

// MinConf: Minimum confidence threshold

// (automatic selection by default)

k=1, // LHS itemset size

list = null; // Resulting decision list (degenerate tree)

while ((list is null) and (k < MaxSize))

// Rule mining

Find all the good rules from input data with

k items in the LHS and the class attribute in the RHS
eg {Ara) .. Apar} = {Cej}

if there are candidate rules to grow the list

// Rule selection
Scleet the best sct of rules with the same sct of attributes
{A;.. Ay} in the LHS according to the preference criterion.

// Tree branching

list = List resulting from the selected rules
{A1.a1 .. Ap.ar} = {C.¢;}, where
all training examples not covered by the selected
association rules are grouped into an ‘else’ branch
which is built calling the algorithm recursively:
data = uncovered data // Transaction trimming
list.else = ART (data, MaxSize, MinSupp, MinConf);

else
k=Fk+1;

if list is null // no decision list has been built
list = default rule labelled with the most frequent class;

return list;

Figure 1. ART algorithm outline.

ART: A HYBRID CLASSIFICATION MODEL 73

3.1.2. Rule mining: Candidate rules. The first step in the ART algorithm is to discover
potentially predictive rules in the training dataset. These rules will be used to grow the
decision list which ART builds. An algorithm is needed to look for underlying rules in the
input dataset.

The simplest possible rule mining algorithm is to discover all the association rules that
include the class attribute as their consequent and satisfy the user-specified MinSupp and
MinConf thresholds.

Since dense datasets are common in the relational databases typically used for classifica-
tion problems (i.e., datasets with a relatively small number of missing values), an algorithm
like TBAR is the best choice (Berzal et al., 2001) because it takes advantage of the First
Normal Form to reduce the size of the candidate set in the association rule mining process
(i.e., the number of potentially relevant itemsets).!

The MinSupp parameter can be a fixed number of tuples, or a percentage of the size
of the current training dataset. In the first case, an absolute minimum support threshold
is established beforehand and is fixed during all the stages of learning. Using a relative
minimum support threshold, the actual support is adapted to the size of the remaining
dataset. For example, if MinSupp is set at 0.1 and we begin with 1000 tuples, the absolute
minimum support will be 100 tuples at the head of the list while it will be lower in later
stages of the algorithm. If there are N tuples left in the training dataset, 0.1 * N will be
used as the minimum support threshold in order to obtain all the frequent itemsets in the
remaining dataset, which might not be frequent in the complete dataset. When setting
MinSupp as a percentage of the size of the remaining dataset, this parameter adjusts itself
to the size of the current dataset, so it does not need to be tuned by the end-user. A value
between 0.05 and 0.1 seems reasonable for building decision lists. See Section 3.4 for a
more formal discussion of the MinSupp threshold value effect on the ART decision list
properties.

Let us now examine how to work with the MinConf threshold. This parameter is directly
related to the confidence of each of the association rules considered and thus, it should be
a near-to-1 value (0.9, for instance). But we have found that MinConf should not be finely
tuned by the expert user. As we will show that it is better to let ART adjust it automatically.

In any case, if the expert user so requires, MinConf can be manually tuned. A typical
example of this situation can be found in the MUSHROOM dataset from the UCI Ma-
chine Learning Repository, where a single classification mistake could have disastrous
consequences. In this particular case, a false positive is not allowable because a poisonous
mushroom would be labeled as edible. Obviously, that is not advisable, since a classification
mistake could provoke health problems, even death. A stringent 100% minimum confidence
threshold might be required for the MUSHROOM dataset. In cases such as these, a user-
established MinConf threshold must be used to ensure that the classification model obtained
by ART has the desirable properties (e.g., no false positives).

The MUSHROOM dataset is an extreme example, however. Setting a minimum confi-
dence threshold beforehand can be counterproductive if this threshold is not realistic, since
no classification model would be obtained if MinConf were too high for the actual dataset. In
such a case, no association rules would be discovered and no suitable decision list could be
built. Moreover, a higher MinConf threshold does not imply greater classifier accuracy, and,

74 F. BERZAL ET AL.

from a practical point of view, our algorithm training time could be significantly increased
(see Section 4).

Consequently, we need to introduce an automatic MinConf threshold selection method
into ART. The idea underlying any such algorithm is that once the most accurate association
rule has been found (i.e., the one with the best confidence value), only similarly accurate
rules are used to build the list. An heuristic we have found to work quite well is to consider
only those rules with confidence above MaxConf-A in each step, where MaxConf stands
for the maximum confidence among the discovered association rules. This heuristics uses
a parameter A to establish a “tolerance” interval for the confidence of the rules. We select
the best possible rule and only allow slightly worse rules to be included in each set of good
rules. Using this rather restrictive approach, the algorithm ensures that no bad rules will be
considered. In the worst case, a good rule might not be considered at the current level of the
decision list. In any case, it will be considered later when processing the remaining data,
where it will hold with even more support (since the dataset is trimmed every time that new
rules are added to the decision list).

Our experiments have demonstrated that the automatic confidence threshold selection
obtains nearly optimal solutions (when, e.g., A is made equal to MinSupp). In our opinion,
a user-established minimum confidence threshold should only be used when our problem
domain requires it and it therefore becomes strictly necessary (as in the MUSHROOM
example).

3.1.3. Rule selection: Preference criterion. Once we have obtained some suitable rules
for classifying input data (i.e., a partial classification model has been built), some of them
must be appended to the current, partial decision list.

Our algorithm checks for the existence of at least one set of suitable attributes {A; A, ..
A, } for continuing the decision list. The selected set of attributes must lead to predictive and
accurate rules of the form {A.a; Aj.a; .. Ag.a;} = {C.c;}, which will be used to classify
input data as belonging to class c;.

ART tries to make good use of the information obtained from the rule mining process.
All the rules obtained at each stage of the algorithm involve k-itemsets in their left-hand
side. Each k-itemset corresponds to a set of k different attributes. The rules corresponding
to each set of k different attributes are grouped together and heuristics are employed to
choose the best candidate among these sets in order to continue the list.

ART follows a simple heuristics which consists in choosing the set of attributes which cor-
rectly classifies more instances in the training dataset (using the previously obtained rules),
provided that the corresponding rules verify the MinConf constraint. Such a heuristic max-
imizes the number of classified examples and, thus, minimizes the number of unclassified
examples. ART tends to reduce the length of the decision list following Occam’s Economy
Principle.

3.1.4. ‘Else’ branches. Once a set of rules with the same set of attributes in their an-
tecedents has been selected during the rule selection phase, we proceed now to grow the
list using the discovered information.

ART: A HYBRID CLASSIFICATION MODEL 75

e Each of the selected rules is added to the list.
o All the training examples which are not covered by the selected rules are grouped together
into an ‘else’ branch to be processed in later stages of our algorithm.

In some sense, ART embeds the philosophy of the algorithms proposed by Liu Hu, and
Hsu (2000a, 2000b), who try to organize and summarize the set of all the discovered rules
intuitively by using general rules, summaries and exceptions. The idea is to replace a set of
potentially too many rules by a more concise representation of the discovered knowledge,
which is also easier to work with. The ART approach achieves this goal while creating its
classification model, while Liu et al. attain it with hindsight.

The use of ‘else’ branches in decision lists can make classification models harder to
understand by humans, since the meaning of a given rule depends on its position in the list
(Segal & Etzioni, 1994). However, it should be noted that ART also differs from conventional
decision list learners because it discovers multiple rules at a time, so that the rules learnt in a
given iteration are mutually exclusive, whereas rules are strictly ordered in standard decision
lists. This fact reduces the decision list depth and partially mitigates the understandability
problem mentioned above, which is inherent to the decision list model.

Once we have described our proposed classification model, we present one application
where we have obtained interesting results in order to illustrate ART main features.

3.2. An example application: The splice dataset

Our aim is to determine the type of a DNA splice junction (exon/intron, intron/exon, or
neither) given a primate splice-junction gene sequence, which consists of 60 nucleotides.
The following problem description is a verbatim transcript from the UCI Machine Learning
Repository documentation:

Splice junctions are points on a DNA sequence at which ‘superfluous’ DNA is removed
during the process of protein creation in higher organisms. The problem posed in this
dataset is to recognize, given a sequence of DNA, the boundaries between exons (the parts
of the DNA sequence retained after splicing) and introns (the parts of the DNA sequence
that are spliced out). This problem consists of two subtasks: recognizing exon/intron
boundaries (referred to as EI sites), and recognizing intron/exon boundaries (IE sites).
(In the biological community, IE borders are referred to as “acceptors” while EI borders
are referred to as “donors”.)

For this particular problem, ART builds a classifier which achieves excellent classification
accuracy and whose size is still manageable. TDIDT algorithms, such as C4.5, obtain slightly
better classification accuracy (above 90% using cross-validation) but they also require much
larger decision trees which are harder for humans to understand. The C4.5 decision tree, for
example, would require between three and four times the space occupied by our tree even
after pessimistic pruning.

Moreover, ART exploits the symmetries around the junction (which occurs between P30
and P31) to attain a better understanding of the underlying patterns. Observe, for exam-
ple, the P29-P31, P28-P32 and P25-P35 pairs used in the decision list. Typical TDIDT

76 F. BERZAL ET AL.

P30 = A : TYPE = N (473|62)
P30 = C: TYPE = N (441|24)
P30 = T : TYPE = N (447|57)
clse
P28 = A and P32 = T : TYPE = EI (235|33)
P28 = G and P32 = T : TYPE = EI (130[20)
P28 = C and P32 = A : TYPE = IE (160|31)
P28 = Cand P32 = C: TYPE = IE (167|35)
P28 = C and P32 = G : TYPE = IE (179|36)
else
P28 = A : TYPE = N (106|14)
P28 = G: TYPE = N (94[4)
clse

P29 = C and P31 = G : TYPE = EI (40/5)
P29 = A and P31 = A : TYPE = IE (86/4)
P29 = A and P31 = C : TYPE = IE (61[4)
P29 = A and P31 = T : TYDE = IE (39]1)

else
P25 = A and P35 = G : TYPE = EI (54/5)
P25 = G and P35 = G : TYPE = EI (63|7)
clse
P23 = G and P35 = G : TYPE = EI (40/8)
P23 = T and P35 = C: TYPE = IE (37|7)
clse

P21 = Gand P34 = A : TYPE = EI (41/5)

else
P28 = T and P29 = A : TYPE = IE (66|8)
else
P31l = G and P33 = A : TYPE = EI (62(9)
clsc
P28 = T : TYPE = N (49(6)
else
P24 = Cand P29 = A : TYPE = IE (39(8)
clse

TYPE = IE (66[39)

Figure 2. ART classifier for the SPLICE dataset.

algorithms cannot use such associations and thus their applicability to problems where cor-
relations play an important role is restricted. Although they might obtain better classification
accuracy, ART provides simpler and much more understandable classification models.

3.3. Using the classifier

The classifier obtained by ART can be used to classify unlabelled instances as any other
decision list classifier. Beginning at the head of the list, a given example is checked against
each rule in sequence (i.e., against each rule within a mutually-exclusive set, and following
an ‘else’ branch if necessary) until a matching rule is found. Any example will reach a
matching rule eventually (including possibly a terminal default rule), and it will be labelled
with the most common class that was found in the training data from which that rule was
created. The ART classification process is described in figure 3.

When building the classifier, null values can be automatically sent to the ‘else’ branch,
since they are not covered by the discovered association rules. However, when classifying

ART: A HYBRID CLASSIFICATION MODEL 77

function classify (art, instance): class;
// Input: art = ART classifier

// mstance = Unlabeled instance
// Output: class = Assigned class

Match the value(s) of the instance attribute(s) with the
valuc(s) in the next mutually-cxclusive set of rules

if the value(s) correspond(s) to any of the rules
return the corresponding rule class

else if there exists an else branch // follow it
return classify(art.else,instance);

else
return default class;

Figure 3. Unlabelled data classification.

data with unknown values for some attributes, another alternative could be followed, such
as the one used by C4.5, for instance.

A simple rule-based procedure to evaluate an ART classifier exists. ART decision lists
may end up in a default class value (produced when no association rules are found to
grow the decision list further). Even worse, when the association rules used to build the
list cover all the examples in the input dataset, a given instance may lead to nowhere in
the decision list. In this unlikely, but possible, case, that instance would be labelled with
the most common class covered by the current sublist (i.e., the most common class in the
training data which led to that sublist).

3.4. ART classifier properties

In this section, we will discuss several key properties of our method for building classifiers:

Search strategy: ART performs an exhaustive global search of potentially interesting rules
in the training dataset, but it makes that search local with respect to the remaining
dataset not covered by rules already in the decision list. In this way, the efficiency
which characterizes the heuristic greedy search used in typical TDIDT algorithms and
other rule learners such as CN2 is combined with the power of the exhaustive search
performed by the association rule mining algorithm. In fact, trying to classify as many
remaining examples as possible helps ART to make better local decisions when building
the classification model.

In some respects, ART follows Michalski’s STAR methodology (Sestito & Dillon,
1994, chapter 3), as CN2 does, since it generates rules iteratively until a complete
classification model has been built. It should be noted however that ART, as other
decision list inducers, removes both positive and negative examples covered by the
generated rules from the current dataset, while STAR algorithms must keep all negative
examples when trying to build new hypotheses, which leads to more complex rules. This
removal of covered instances is referred to as ‘transaction trimming’ in Data Mining
(Park, Chen, & Yu, 1997) and it helps to reduce the number of I/O operations needed to
build the classifier.

78

F. BERZAL ET AL.

It should also be noted that ART searches for sets of rules in parallel, while other
algorithms try to find one rule at a time.

Although a greedy algorithm was chosen to build the ART classifier, other approaches
would also be feasible. For example, a beam search could be performed to find better
classifiers. However, efficiency is a must in Data Mining problems and greedy algorithms
are the best choice in this case.

Robustness (outliers & primary keys): The use of concepts taken from association rule

mining helps to build more robust classifiers, minimizing the effects of noise in the input
data.

The minimum support threshold makes isolated outliers harmless since they are not
taken into account when deciding how to build the classifier. Moreover, the support
threshold also removes the problems faced by other TDIDT algorithms when some
attributes are nearly keys (e.g. ID3 would always choose these kinds of attributes because
they minimize the entropy in the resulting subtrees) without the need for more artificial
mechanisms (such as C4.5 gain ratio criterion).

ART therefore provides a uniform treatment of outliers (which do not contribute
to association rules significantly), and primary and candidate keys (whose values do
not have enough support to generate association rules on their own). Both outliers and
primary keys are thorny issues for traditional TDIDT algorithms.

List complexity: The length of the decision list is restricted by the minimum support

4.

threshold.

Given an absolute minimum support threshold MinSupp as anormalized value between
0 and 1, the ART decision list will have at most I/MinSupp levels (i.e., number of sets
of same-attribute rules), because at each level n*MinSupp instances will be trimmed at
least, where 7 is the number of instances in the training dataset.

When an absolute minimum support threshold is used, no more than MaxSize*
(1/MinSupp) scans over the input data will be needed to build the complete classi-
fier, since all the association rules can be obtained with, at the most, MaxSize scans
over the training data using simple algorithms such as Apriori. In other words, ART
is O(n) on the size of the training dataset. This fact is essential for successful data
mining.

The list “branching factor” (i.e., the number of rules within same-attribute rule sets)
is also determined by the minimum support threshold. 1/MinSupp is an upper bound on
the branching factor because no more than 1/MinSupp rules can be selected at each level
of the list (an extreme case would occur when all training instances are classified at the
same level of the list using the maximum possible number of rules, all of them with the
minimum allowable support).

Empirical results

We have implemented ART in Java 2 using Sun JDK 1.3. Our program accesses data stored
in relational databases through JDBC (which stands for ‘Java Database Connectivity’, the
standard call-level interface of the Java programming language). Our implementation of
ART makes use of TBAR (Berzal et al., 2001), an Apriori-like algorithm for finding frequent

ART: A HYBRID CLASSIFICATION MODEL 79

Table 1. Datasets used in our experiments.

Dataset Examples Attributes Classes
AUDIOLOGY 226 70 24
CAR 1728 7 4
CHESS 3196 36 2
HAYES-ROTH 160 5 3
LENSES 24 6 3
LUNG CANCER 32 57 3
MUSHROOM 8124 23 2
NURSERY 12960 9 5
SOYBEAN 683 36 19
SPLICE 3175 61 3
TICTACTOE 958 10 2
TITANIC 2201 4 2
VOTE 435 17 2

itemsets (Agrawal & Srikant, 1994). We also used Aspect], an aspect-oriented extension of
the Java programming language (Kiczales et al., 2001), in order to monitor I/O operations
in our experiments.

All the results reported in this section were obtained using 10-CV (ten-fold cross-
validation). The tests were carried out on a Pentium III 1100 MHz PC running MS Windows
NT 4.0 WorkStation with 128 MB of RAM. The back-end database system used in our ex-
periments was InterBase 6 although any other database system would work (in fact, we also
tested ART against Oracle and IBM DB2 servers).

Table 1 shows the datasets? we used in our experiments, which were downloaded from
the UCI Machine Learning Repository.

In this section we compare the performance of ART classifiers against several well-
known classifiers, which we translated into Java from their original C implementations.
ART results where obtained using the automatic minimum confidence support threshold
selection described in Section 3.1.2 (with A = MinSupp), MinSupp = 5%, and MaxSize =
3, which seem reasonable values for ART parameters.

C4.5 was selected as reference TDIDT algorithm (using Quinlan’s gain ratio criterios and
pessimistic pruning, CF = 0.25), while AQR and CN2-STAR were employed as standard
rule inducers. Three decision list learners (CN2-DL, IREP, and RIPPER) were also tested,
as well as two reference classifiers (Naive Bayes and a default classifier which assigns
the most common class to any given instance). Alternative classifiers were also tested and
yielded similar results, so they are omitted here.

4.1. Accuracy

As Table 2 shows, ART classifier accuracy is comparable to or even better than the accuracy
achieved by other well-known classifiers in the larger datasets (e.g. NURSERY and CAR)

F. BERZAL ET AL.

80

%S08y B19¥9 %Y6°'€8 %8108 %e1'S8 %S S8 %SO'LL %IL'S8 %Y6'c8 oSeIoay
%eS Ty %88°LS %E6'LL %TTTL %EYLL %e6'8L PIL89 %LO'6L %e9SL o5elony
00FF€€9 00rF¢€€9 86£F099 €Ly F L'9S 9ly + el 96+ LIL 8'6¢ F0°S9 0ceEFLI8 0veE+00L SHSNH'T

I'IEF00r celFeeyr 66CF0SY L'1CF0°6¢ 6'LC F 8°6¢ ¥'0CF T6¢ 8'1C F 8'SC L9e F eer 9°0CF 807y YHONVD ONNT
LeFvec LIIF619 6+ I'8L S'91 F 889 6+ CoL I'ITF29L Sel F0°9 SIIF8¢L 86 F V18 HLOY-SHAVH
L'8F 1'6C I'8 F¥'¢C e+ o6¢€L T8F V9 v+ 108 69F9¢CL 6 F¥99 €9F I8 §8FTCY ADOT01dNV

YLFYI9O 9CFT68 €TFO6T6 I'TFO¥6 LTF T I'TFLY6 TrF €6 STF6S6 6'CTF 656 SHIOA
TOFTEL TEFLYS TI+FI'I6 €¢F 188 TIF €6 YTFI1T6 LEFTES YTFLE6 LTFST6 NVAIAOS
FOFESO HOFES9 OTFSL6 80 F 9°L6 81 F +'T6 80 F 0'86 TYFET8 6'TF8¢€8 LTF I8 HOLOVLIIL
0001 > 221§
%0S+S %9Y"TL %9606 %LY 68 %88°€6 %STE6 %6L"98 %LS€6 %€9°€6 a3eIoAy
8TFO0L STFO0L 9TF¥8L STF 6L L'TF 866 6'0 F 6'¢€6 0CTF IS8 TIF6T6 ¥1F986 qvo
SOFLLY LOFO089 90F¢€8L 90 F €8L LOF T'6L LOF8SL OTFLLY LOF 1°6L 80F 9'8L DINVLIL
TOFTTS €I1FCST9 €0FT66 €0 F T66 S0 F €66 90 F ¥'66 80F I'L6 S0F T66 I'TFLL6 SSHHD
LTF6IS LIF6EIS LIFIE6 I'TFO016 9T FT06 S0F €T6 CTFT6L FTIFIY6 STFE68 HOI'1dS
STFQIS 60F€¥6 00F000I 00FO000I 00FO000T 00F000I 00FO000I O00FO000I €0FS86 WOOYHSNIN
00F¢cee €0F088 TIFLI TTF 68 TOF 066 TOF 186 80F L'16 TOFT96 TOF 1°66 AJASINN
0001 < 221§
IoyIsse[o sokeq =7 dad1 (1@ (4VLS) R (0)4 SO v Jesere(q
negeq QATEN dAdd1d IND ND

"SIQYISSE[O UOWIOD IAYI0 “sA (J1oddns wnwrurw g, pue UONI[S PIOYSAIY} OUIPYUOD dnewioine Juisn) AoeInooe [V °Z 2]90L

ART: A HYBRID CLASSIFICATION MODEL 81

Table 3. Statistical tests performed to check if the differences observed between ART and other classifiers
accuracy are significant.

Student’s 7-test Wilcoxon’s test
ART vs. C4.5 p < 0.3507 p <0.3475
ART vs. AQR p <0.0032 ++ p <0.0100 ++
ART vs. CN2-STAR p <0.3901 p < 0.5405
ART vs. CN2-DL p <0.3942 p < 0.5860
ART vs. IREP p <0.1645 p <0.1548
ART vs. RIPPER p <0.0128 ++ p <0.0100 ++
ART vs. Naive Bayes p <0.0004 ++ p <0.0100 ++
ART vs. Default p <0.0001 ++ p <0.0100 ++

while its performance slightly degrades in the smaller datasets, such as AUDIOLOGY and
LENSES, due to the nature of the association rule process (which is devised to efficiently
manage huge datasets).

Table 3 shows the statistical tests we performed to check if ART classifier accuracy sig-
nificantly differs from other classifiers accuracy.> We can conclude that ART is competitive
with a variety of standard approaches.

However, accuracy is not the only factor to be considered when comparing classifiers.
We should also take into account the resulting models complexity and the efficiency of the
learning process.

4.2. Complexity

Figure 4 illustrates the complexity of the resulting classifiers, using the number of generated
rules to measure classifier complexity.

Pure rule inducers following Michalski’s STAR methodology (i.e. AQR and CN2-STAR)
build the most complex classifiers. On the other hand, decision lists are notably smaller (let
us note the logarithmic scale in the figure). Decision tree complexity, using C4.5 in our
experiments, lies somewhere between decision lists and rule inducers.

In terms of classifier complexity, ART is better than STAR and TDIDT algorithms (even
after pruning), while ART is similar to alternative decision list inducers. This fact is specially
interesting if we take into account the results reported in the following section.

4.3. Efficiency

Tables 4 and 5 show the training time required by different algorithms for the larger datasets
used in our experiments (those with more than 1000 tuples). The algorithms are ordered
attending to their average training time across those datasets. Table 5 is included to reflect
the existing differences among the alternative learning algorithms when they are forced to
use secondary storage, as any of them would do to process datasets frequently found in
Data Mining applications (i.e. datasets which do not fit into main memory).

82 F. BERZAL ET AL.

1000 + (8]
0 o o @ audiology
l . Mcar
£ oo B - » e : :.hm h
= ayesrot
z 14 m A A @ e
= I h. 4 K lenses
E] — A @ lungcancer
o " K ' i + mushroom
s + o k.4 L O nursery
= * 4)
Z [] [] o] = soybean
o 10) ’ % é ® splice
© E‘If & ¥ * W tictactoe
A X ° A titanic
vole
X
1 g ik
ART C4.5 AQR CN2-5TAR CN2-DL RIPPER

Figure 4. Classifier complexity.

ART requires more time than the traditional TDIDT induction process, as exemplified by
C4.5, since ART searches in a larger solution space, which is partially controlled by ART
MaxSize parameter. When MaxSize = 1, ART is able to build classifiers as efficiently as
any TDIDT classifier, although this hinders ART ability to use multi-variate splits. On the
other hand, when MaxSize > 3, ART performance might deteriorate since the number of
frequent patterns in a given dense dataset might exponentially increase with its size.

With respect to decision list and rule inducers, ART is even one order of magnitude
faster than AQR, CN2, IREP, and RIPPER in some cases because of its search strategy.
Where previous rule inducers tried to find one rule at a time, ART looks for sets of rules
reducing the number of database scans it must perform to evaluate candidate solutions.
These differences are dramatically exacerbated when the training dataset does not fit into
main memory (Table 5).

Table 4. Average training time for the larger datasets.

Algorithm NURSERY MUSHROOM SPLICE CHESS TITANIC CAR
C4.5 0.8s 0.8s 0.9s 0.9s 0.1s 0.2s
CN2-DL 15.9s 1.7s 23.7s 1.4s 0.2s 0.3s
IREP 61s 4.2s 19.7s 2.6s 0.2s 0.5s
AQR 63s 1.8s 64s 3.3s 0.1s 1.1s
ART 6.2s 1.6s 188s 6.8s 1.1s 4.8s
RIPPER 236s 7.0s 39.5s 4.6s 0.3s 1.5s

CN2-STAR 310s 8.0s 217s 14.1s 0.2s 4.2s

ART: A HYBRID CLASSIFICATION MODEL 83

Table 5. Average training time for the larger datasets when disc access is forced. When memory resources are
scarce, ART is only slower than C4.5.

Algorithm NURSERY MUSHROOM SPLICE CHESS TITANIC CAR
C4.5 17s 4s 9s 7s 1.2s 4s
ART 101s 13s 605s 57s 4.7s 13s
RIPPER 45s 719s 3062s 819s 6.8s 9s
IREP 5634s 415s 4389s 505s 12.0s 101s
CN2-DL 1743s 129s 4710s 155s 12.7s 51s
AQR 5906s 112s 12297s 403s 0.6s 223s
CN2-STAR 295525 836s 29257s 4528s 21.5s 1023s
1000000000 & m
100000000 i ._\:
= e A @ audiology
10000000 * M car

- | . < A chess

E 1000000 T | hayesroth

E A - ¥ lenses

=

et 100000 - o ® ® lungcancer

g é ® - mushroom

= 10000 o Q O nursery

5 - * 4 4 = soybean

= 1000 - ' * splice

e ® M tictactoe

= 100 Y : * A utame

vole
10
ART C4.5 CN2-STAR CN2-DL RIPPER Naive Bayes

Figure 5. 1/0O cost for different algorithms in terms of the number of records fetched during the training process.

In Data Mining applications, CPU time is not the only relevant factor to be considered
when evaluating competing alternatives. Figures 5 through 7 illustrate the I/O cost associated
with each learning algorithm.

Figure 5 shows the number of times a record is accessed, while figure 6 records the number
of times a dataset is sequentially scanned. It should be noted that the scanned dataset is
only a fraction of the whole training dataset once the classification model has been partially
built. The Naive Bayes classifier is included as a reference, since its I/O cost is optimal: it
only needs to scan the training dataset once. Our efficient RainForest-like implementation
of C4.5 (Gehrke & Ramakrishnan, 1998) performs two dataset scans at each internal node
of the tree: one to collect the statistics which are necessary to evaluate alternative splits,
another to branch the tree. On the other hand, decision list and STAR inducers perform one
scan for each formulated hypothesis. This fact entails a I/O bottleneck when datasets do

84 F. BERZAL ET AL.

1000000 | =
- ®
e - Q ;
100000 | & ¥ - # audiology
B A Wcar
.y : A chess
g 10000+ ' . hayesroth
= i
o . = ¥ lenses
- [® lungcancer
= a
= ! + mushroom
= 1000 | < i & i "
i . " # © nursery
E'_ - A = sovhean
o | - { 5 @ splice
= A M ictacios
] A titanic
; X yoe
10 |
A
(]
1+
ART 4.5 CN2-STAR CN2-DL RIPPER Naive Bayes
Figure 6. Number of times a dataset is scanned during classifier training.
1 00000000
I) —i
: S -
x » A ® ART
[EEETTET] - x
X A
= X A WC4S
A 5
b 1000000 — - b. ~—& = | WG4
= &
= X A
- X A N2 -ST
n 1000 Koy A CN2-STAR
= *
= s
g v HL . S CN2-DL
2 LI -
-
[=] 1000 ‘] . X RIPPER
= L] "
= @ 9 f = =
100 L ® - * ® Naive Bayes
L
[]
1 8
L]
L]
. T - ' .
1 2 4 8 16 32 64 128 256 512 1024
Page size

Figure 7. Number of pages read by each algorithm for different page sizes. The page size indicates the number
of training examples a page contains.

not to fit into main memory. In contrast, ART I/O cost, as happened with C4.5, is bound by
the resulting classifier complexity: ART performs a maximum of MaxSize + 1 scans each
time it looks for association rules to be added to its classification model. The overall I/O
operations ART performs is similar to C4.5 cost because the additional search space ART
explores helps achieve more compact classifiers, as seen in Section 4.2, reducing thus the
need for dataset scans.

In order to complete our experimentation, we also measured the number of disk pages
read by each algorithm for different page sizes, as illustrated in figure 7. Since ART, CN2,

ART: A HYBRID CLASSIFICATION MODEL 85

and RIPPER are iterative algorithms, the number of disk pages read by those algorithms
proportionally decrease with the page size. C4.5, on the other hand, follows a recursive
top-down strategy which fragments the training dataset into disjunct subsets, hence a non-
linearity is shown in figure 7.

In summary, ART exhibits excellent scalability properties which make it suitable for
Data Mining tasks. Its search strategy, which employs efficient association rule min-
ing algorithms, makes ART orders of magnitude more efficient than alternative rule and
decision list inducers, whose I/O requirements constrain their use in real-world situa-
tions unless sampling is employed. With respect to TDIDT algorithms, although ART
requires more computing resources, its additional cost is reasonable if we take into ac-
count the properties of the classification models it obtains, which are discussed in previous
sections.

4.4. Threshold selection

This section summarizes some experiments we have performed to check the validity of
ART default parameter settings.

4.4.1. Minimum support threshold. The MinSupp minimum support threshold helps us
to set the desired granularity level for the problem at hand, and also the time needed
to build the classifier. Although ART accuracy, complexity, and cost across a range of
minimum support thresholds vary depending on the particular datasets (figures 8 through
10), some general trends can be observed. A low minimum support usually yields poor
accuracy and a slightly degraded training time while a high threshold might not achieve
good accuracy either, since potentially interesting patterns in the dataset might never be
considered.

(]

9k

== udiology
=& car

L1

=i chiess

hayesmoth

Tib 4

== enses

=@ lungcances
== mmshoom

=B nursen

Accuracy
LA

sovbean

=4=splice
=B tictictoe

=i titanic
200

voie

1% 250% % T30% 1% 2ira

MinSupp

Figure 8. ART accuracy for different minimum support thresholds.

86 F. BERZAL ET AL.

1000

== udiology
=-car
=#—chess
havesroth
=#=lcnses
=8 lungcancer

 {H]

—+—mushroom
=& nursery
= gavbean
splice
=B liclactoe
== litanic

Classifier complexity

vole

1% 2500 e 7.50% 10% 20

MinSupp

Figure 9. ART classifier complexity for different minimum support thresholds.

1000

S =+ udiology
e — — |
‘\\ =d—chess
- havesroth
=#=lenses
=8 lungcancer

10 4 . =+—mushroom
=S nursery
—sovbean
=b—gplice
=B uctactos

| ==titanic

Training time (s)

vile

ol T T T T
1% 2.50% 3 7.50% 10% 2rt

MinSupp

Figure 10. ART training time for different minimum support thresholds.

4.4.2. Heuristic confidence threshold selection. Regarding the minimum confidence
threshold, it should be noted that a threshold established beforehand can be certainly used
to establish a minimum desired accuracy in some cases (such as the MUSHROOM dataset),
although increasing a minimum confidence threshold does not imply higher classifier accu-
racy. In fact, we have empirically observed that the automatic MinConf confidence threshold
selection described in Section 3.1.2 achieves nearly optimal accuracy results when compared
to tuning that parameter by trial and error.

Figures 11 through 13 summarize the results we have obtained when varying the A
tolerance margin in our threshold selection heuristic. Increasing this parameter helps us to

ART: A HYBRID CLASSIFICATION MODEL 87

100+

o 4
0 1 —+—audiology
== car
=d—chess
hayesroth
=#=lcnscs
== lungeances
=== mushroom
=B=nursery
| =—saybean
0 =#=splice
=& tictacioc
10 == lilanic

T0 1

(4

50

40

30

Classifier accuracy

vote

Tolerance margin

Figure 11. ART accuracy results obtained when varying the A parameter.

1004 =

z =#=audiclogy
= = . /‘L\\ =8 car
%. 10 4 * + — T_.____._\’ —h=chess
£ = T o —— hmvesroth
8 L =#=lenscs
I =& lungcancer
E —+=mushroom
g =& nurscry
= =sovbean
o —#=splice
= nctactoc
== titanic

vole

Tolerance margin

Figure 12. ART classifier complexity when varying the A parameter.

achieve better accuracy results sometimes, specially if we keep this parameter below the
final classifier error rate. Unfortunately, this error rate is unknown beforehand, so we have to
be conservative when setting the A parameter in order to avoid and unnecessary degradation
in ART accuracy. Since no general cost and complexity trends can be confirmed from the
experiments, we use an intermediate A value in our experiments as a trade-off between the
low flexibility implied by a low A value and the possible loss of accuracy which might
occur if we set the A parameter too high. In this sense, the minimum support threshold
used in the association rule mining algorithm is a suitable value for the A parameter since
it makes the tolerance margin proportional to the granularity level of the association rule
mining process.

88 F. BERZAL ET AL.

100y

== audiology
~&-car
100 4 —— A chess
- P L .
— havesroth
u == lonscs
.E == lungcancer
=0 11 = mushroom
.E - nursery
= — son bean
& 3
= +=splice
= =8 uctacioe
=& litanic
vole
01

Tolerance margin

Figure 13. ART training time required for different A parameter values.

5. Conclusions

In this paper we have presented a new strategy to build compact, robust, and scalable
classification models. Our proposal has empirically obtained promising results, as it is
reported in Section 4. ART classifier accuracy, complexity, and training cost tradeoffs make
it an appealing and powerful technique to be added to the data miner’s toolbox.

For instance, we have achieved interesting results using ART to classify DNA splice
junctions, where ART discovers and exploits the symmetries around DNA junctions to
attain a better model of the underlying data (Section 3.2).

ART has demonstrated that it can build classifiers which stand out because of their sim-
plicity and robustness. ART classifiers are easy for human users to understand. They handle
both noise (i.e. outliers) and primary keys in the input data seamlessly. The association
rule mining algorithm intertwined within ART provides a simple and effective mechanism
to tackle a wide variety of situations without the need to use more specific, complex and
artificial techniques to solve each problem.

Scalability is another interesting issue concerning ART. ART is scalable and efficient.
Unlike traditional decision list inducers, which learn rules one at a time, ART simultaneously
discovers multiple rules. Moreover, ART does not suffer from the I/O bottleneck common
to alternative rule and decision list inducers, since it employs an efficient association rule
mining algorithm to generate hypotheses. ART is therefore suitable for handling the huge
datasets usually found in real-world problems.

In this article, we have also proposed a heuristic intended to automatically select the
best set of discovered rules. Our heuristics obtains excellent results without the need for
any user-established parameters. In any case, a minimum confidence threshold can be used
to set the minimum allowable classifier accuracy if the problem at hand requires it. This
capability is really interesting in some problems where no errors are allowed or minimum
accuracy constraints are to be met, as we saw in Section 3.1.2.

ART: A HYBRID CLASSIFICATION MODEL 89

5.1. Future work

Dealing with rules involving numerical attributes is in our immediate research agenda, since
most real-life problems include such attributes. Continuous-valued attributes may appear in
the rule antecedents and also in their consequents (in order to solve regression problems).
Although we have not mentioned it before, quantitative association rules have been widely
studied in the literature (Skirant & Agrawal, 1996; Miller & Yang, 1997; Aggarwal, Suu, &
Yu, 1998; Aumann & Lindell, 1999) and can be easily employed to extend ART capabilities.
Clustering techniques at the basis of quantitative association rule mining algorithms can be
applied in a straightforward way, although we should resort to additional information when
available in order to mine more accurate rules (i.e. the class attribute value distribution could
be specially helpful). In fact, any discretization technique might prove useful for building
ART classifiers and further study is required.

In this paper, two ART parameters (the MinSupp minimum support threshold and the
MaxSize maximum antecedent itemset size) should be adjusted to tune our algorithm per-
formance. Their automatic selection is still an open research problem.

It would also be worthwhile studying alternative relevance measures and preference
criteria for the discovered rules. Using a different adaptive threshold for each problem
class has been attempted in order to be able to discover rules for rare classes, but no
significant accuracy improvements were achieved. Nor were they obtained when using more
complex heuristics during the rule selection phase. This remains an open issue regarding
ART classifiers.

Further study on the suitability of ART for incremental learning would be desirable too,
since efficient methods to update a classifier given a set of database updates are important
in Data Mining applications.

Notes

1. The First Normal Form of relational databases states that every attribute is atomic and each relation instance
has values along the same attributes. This is the standard format of data commonly assumed by classification
algorithms, though not typically assumed in association rule discovery systems.

2. This paper only addresses ART classifiers with categorical attributes, although ART classifiers can be built for
numerical attributes using any discretization technique, as any other decision list or TDIDT learner does.

3. Wilcoxon’s matched-pairs signed-ranks test was included because the typical 7-test assumes that the differences
are Normal distributed and we cannot assure that.

References

Aggarwal, C.C., Sun, Z., & Yu, P. S. (1998). Online algorithms for finding profile association rules. In Proceedings
of the 1998 ACM CIKM 7th International Conference on Information and Knowledge Management (pp. 86-95).
Bethesda, Maryland, USA.

Aggarwal, C. C., & Yu, P. S. (1998a). A new framework for itemset generation. In Proceedings of the Seven-
teenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (pp. 18-24). Seattle,
Washington.

Aggarwal, C.C., & Yu, P. S. (1998b). Mining large itemsets for association rules. In Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering.

90 F. BERZAL ET AL.

Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases.
In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (pp. 207-216).
Washington, D.C.

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In VLDB’94, Proceedings of 20th
International Conference on Very Large Data Bases (pp. 487-499). Santiago de Chile, Chile.

Ali, K., Manganaris, S., & Srikant, R. (1997). Partial classification using association rules. In Proceedings of the
3rd International Conference on Knowledge Discovery in Databases and Data Mining (pp. 115-118). Newport
Beach, California, USA.

Aumann, Y., & Lindell, Y. (1999). A statistical theory for quantitative association rules. In Proceedings of the
Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 261-270). San
Diego, California, USA.

Berzal, F., Cubero, J. C., Marin, N., & Serrano, J. M. (2001). TBAR: An efficient method for association rule
mining in relational databases. Data & Knowledge Engineering, 37:1, 47-64.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C.J. (1984). Classification and Regression Trees. Wadsworth,
California, USA.

Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997). Dynamic itemset counting and implication rules for
market basket data. In Proceedings of the ACM SIGMOD International Conference on Management of Data
(pp. 255-264). Tucson, Arizona, USA.

Chan, P. K. (1989). Inductive learning with BCT. In Proceedings of the 6th International Workshop on Machine
Learning (pp. 104-108). Ithaca, NY.

Clark, P., & Boswell, R. (1991). Rule induction with CN2: Some recent improvements. In Y. Kodratoff (ed.),
Machine Learning—EWSL-91 (pp. 151-163). Berlin: Springer-Verlag.

Clark, P, & Nibblett, T. (1989). The CN2 induction algorithm. Machine Learning Journal (Kluwer Academic
Publishers), 3:4,261-183.

Cohen, W. (1995). Fast effective rule induction. In Proc. 12th International Conference on Machine Learning (pp.
115-123). Morgan Kaufmann.

Domingos, P. (1996). Linear-time rule induction. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD-96) (pp. 96-101).

Domingos, P. (1998). Occam’s two Razors: The sharp and the blunt. In Proceedings of the Fourth Inter-
national Conference on Knowledge Discovery and Data Mining (KDD-98) (pp. 37-43). New York City,
USA.

Domingos, P. (1999). The role of Occam’s Razor in knowledge discovery. Data Mining and Knowledge Discovery,
3:4,409-425.

Dong, G., & Li, J. (1999). Efficient mining of emerging patterns: Discovering trends and differences. In Proceedings
of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 43-52). San
Diego, CA USA.

Dong, G., Zhang, X., Wong, L., & Li, J. (1999). CAEP: Classification by aggregating emerging patterns. In
Proceedings of the Second International Conference on Discovery Science (pp. 30-42). Tokyo, Japan.

Elder IV, J. F. (1995). Heuristic Search for Model Structure: The Benefits of Restraining Greed. Al & Statistics—95,
Ft. Lauderdale, Florida, pp. 199-210.

Freitas, A. A. (2000). Understanding the crucial differences between classification and discovery of association
rules—A position paper. SIGKDD Explorations, 2:1, 65-69.

Fiirnkranz, J., & Widmer, F. (1994). Incremental reduced error pruning. In Machine Learning: Proceedings of the
11th Annual Conference. New Brunswick, New Jersey: Morgan Kaufmann.

Gehrke, J., Ganti, V., Ramakrishnan, R., & Loh, W.-Y. (1999a). BOAT—optimistic decision tree construction.
In Proceedings of the 1999 ACM SIGMOD international conference on Management of Data (pp. 169-180).
Philadelphia, PA, USA.

Gehrke, J., Loh, W.-Y., & Ramakrishnan, R. (1999b). Classification and regression: Money can grow on trees. In
Tutorial Notes for ACM SIGKDD 1999 International Conference on Knowledge Discovery and Data Mining
(pp- 1-73). San Diego, California, USA.

Gehrke, J, Ramakrishnan, R., & Ganti, V. (2000). RainForest-A framework for fast decision tree construction of
large datasets. Data Mining and Knowledge Discovery, 4:2/3, 127-162.

Giordana, A., & Neri, F. (1996). Search-intensive concept induction. Evolutionary Computation, 3:4, 375-416.

ART: A HYBRID CLASSIFICATION MODEL 91

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. In Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data (pp. 1-12). Dallas, TX, USA.

Han,J. L., & Plank, A. W. (1996). Background for association rules and cost estimate of selected mining algorithms.
In CIKM 96, Proceedings of the Fifth International Conference on Information and Knowledge Management
(pp- 73-80). Rockville, Maryland, USA.

Hidber, C. (1999). Online association rule mining. In Proceedings of the 1999 ACM SIGMOD international
conference on Management of Data (pp. 145-156). Philadelphia, PA, USA.

Hipp, J., Giintzer, U., & Nakhaeizadeh, G. (2000). Algorithms for association rule mining—A general survey and
comparison. SIGKDD Explorations, 2:1, 58—64.

Houtsma, M., & Swami, A. (1993). Set-oriented mining for association rules. IBM Research Report RJ9567, IBM
Almaden Research Center, San Jose, California.

Joshi, M. V., Agarwal, R. C., & Kumar, V. (2001). Mining needles in a haystack: Classifying rare classes via
two-phase rule induction. In Proceedings of the 2001 ACM SIGMOD International Conference on Management
of Data (pp. 91-101). Santa Barbara, California.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., & Griswold, W. G. (2001). Getting started with
Aspect. J. Communications of the ACM, 44:10, 59-65.

Liu, B., Hsu, W., & Ma, Y. (1998). Integrating classification and association rule mining. In Proceedings of the
Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98) (pp. 80-86). New York
City, USA.

Liu, B., Hu, M., & Hsu, W. (2000a) Intuitive representation of decision trees using general rules and exceptions.
In Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000). Austin, Texas.

Liu, B., Hu, M., & Hsu, W. (2000b) Multi-level organization and summarization of the discovered rule. In
Proceedings of the sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(pp- 208-217). Boston, MA, USA.

Liu, B., Ma, Y., & Wong, C. K. (2000c). Improving an association rule based classifier. In Proceedings of the
Fourth European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD-2000).
Lyon, France.

Loh, W.-Y., & Shih, Y.-S. (1997). Split selection methods for classification trees. Statistica Sinica, 7, 815-840.

Mehta, M., Agrawal, R., & Rissanen, J. (1996). SLIQ: A fast scalable classifier for data mining. Advances in
Database Technology—Proceedings of the Fifth International Conference on Extending Database Technology
(EDBT’96) (pp. 18-32). Avignon, France.

Meretakis, D., & Wiithrich, B. (1999). Extending naive Bayes classifiers using long itemsets. In Proceedings of
the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 165-174).
San Diego, CA, USA.

Miller, R. J., & Yang, Y. (1997). Association rules over interval data. In Proceedings of the ACM SIGMOD
Conference on Management of Data (pp. 452—461). Tucson, AZ, USA.

Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine Learning, 5,
71-99.

Park, J. S., Chen, M. S., & Yu, P. S. (1995). An effective hash-based algorithm for mining association rules. In
Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data (pp. 175-186). San
Jose, California.

Park, J. S., Chen, M. S., & Yu, P. S. (1997). Using a hash-based method with transaction trimming for mining
association rules. I[EEE Transactions on Knowledge and Data Engineering, 9:5, 813-825.

Quinlan, J. R. (1986a). Induction on decision trees. Machine Learning, 1, 81-106.

Quinlan, J. R. (1986b). Learning Decision Tree Classifiers. ACM Computing Surveys, 28:1, 71-72.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

Rivest, R. L. (1987). Learning decision lists. Machine Learning Journal, 2:3, 229-246.

Segal, R., & Etzioni, O. (1994). Learning decision lists using homogeneous rules. AAAI 1994, 12th National
Conference on Artificial Intelligence (pp. 619-625). Seattle, WA, USA.

Sestito, S., & Dillon, T. S. (1994). Automated Knowledge Acquisition. Sydney: Prentice Hall.

Srikant, R., & Agrawal, R. (1996). Mining quantitative association rules in large relational tables. In Proceedings
of the 1996 ACM SIGMOD International Conference on Management of Data (pp. 1-12). Montreal, Quebec,
Canada.

92 F. BERZAL ET AL.

Rastogi, R., & Shim, K. (1998). PUBLIC: A decision tree classifier that integrates building and pruning. In
VLDB’98, Proceedings of 24th International Conference on Very Large Data Bases (pp. 404-415). New York
City, New York, USA.

Shafer, J. C., Agrawal, R., & Mehta, M. (1996). SPRINT: A scalable parallel classifier for data mining. In VLDB’96,
Proceedings of 22nd International Conference on Very Large Data Bases (pp. 544-555). Mumbai (Bombay),
India.

Wang, K., Zhou, S., & He, Y. (2000). Growing decision trees on support-less association rules. In Proceedings of
the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 265-269).
Boston, MA, USA.

Wang, K., Zhou, S., & Liew, S. C. (1999). Building hierarchical classifiers using class proximity. In VLDB’99,
Proceedings of 25th International Conference on Very Large Data Bases (pp. 363—-374). Edinburgh, Scotland,
UK.

Zheng, Z. (2000). Constructing X-of-N attributes for decision tree learning. Machine Learning, 40:1, 35-75.

Received March 5, 2001

Revised November 12, 2002
Accepted December 11, 2002

Final manuscript December 11, 2002

