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Abstract

Decision trees are probably the most popular and commonly used classification model. They are built
recursively following a top-down approach (from general concepts to particular examples) by repeated
splits of the training dataset. The chosen splitting criterion may affect the accuracy of the classifier, but not
significantly. In fact, none of the proposed splitting criteria in the literature has proved to be universally
better than the rest. Although they all yield similar results, their complexity varies significantly, and they are
not always suitable for multi-way decision trees. Here we propose two new splitting rules which obtain
similar results to other well-known criteria when used to build multi-way decision trees, while their sim-
plicity makes them ideal for non-expert users.
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1. Introduction

Decision trees are probably the most popular and commonly used classification model; e.g. see
[5,16]. Decision trees are built recursively following a top-down approach (from general concepts
to particular examples). That is the reason why the acronym TDIDT, which stands for top-down
induction on decision trees, is used to refer to this kind of algorithms.
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TDIDT algorithms do not usually include any mechanisms to handle noise in the input data
themselves; that is, they just try to obtain a perfect description of the training dataset. This is
counterproductive in real problems, where management of noisy data and uncertainty is a must.
Post-pruning techniques (such as those used in ASSISTANT and C4.5) have proved to be really
useful in order to avoid this problem, also referred to as overfitting. Those branches with lower
predictive power are usually pruned once the whole decision tree has been built.

The TDIDT algorithm family includes classical algorithms such as concept learning system
(CLS), ID3 [15], C4.5 [17] and classification and regression trees (CART) [1] and also more recent
ones such as SLIQ [12], SPRINT [19], QUEST [9], PUBLIC [18], RainForest [6] and BOAT [4].

Most TDIDT algorithms use some kind of greedy heuristics to build the decision tree. Such
heuristics, also known as splitting criteria, are usually hard to understand for non-expert users. In
this paper we present two new splitting rules which are simpler than previous proposals in the
literature and preserve the overall classifier accuracy. Similarity-based impurity measures are
introduced in the following section. Classical proposals are described in Section 3. Section 4
details the process he have followed to obtain two alternative splitting rules. These splitting rules
are compared with previous proposals in Section 5 using some datasets from the UCI Machine
Learning Repository.

2. Impurity-based splitting criteria

Most TDIDT algorithms decide how to branch the tree using some measure of node impurity, as
the information gain criterion found in ID3 [15], C4.5 gain ratio [17], and Gini index in CART [1].
That kind of heuristics tries to benefit splits which are useful to differentiate among problem
classes. They attempt to build small decision trees following Occam’s Economy Principle.

The node impurity makes reference to the mixture of classes in the training examples covered
by the node. When all the examples in a given node belong to the same problem class, then the
node is said to be pure. The more equal proportions of classes there are in a node, the more
impure the node is.

A decision tree impurity measure can be recursively obtained from the impurity measures of
its leaves T (also called terminal nodes) in the following way:

P(T) = 3 pO)(0)
teT
where p(t) is the probability that a given instance is covered by the leaf ¢, and ¢(¢) is the impurity
of this terminal node (7).

The goodness of a given split can be measured as the impurity decrease which is achieved in the
tree when it is branched. The split goodness maximization, therefore, is equivalent to the mini-
mization of the split-generated tree impurity, since the starting point is the same for every possible
split.

An impurity function ¢ measures the impurity of a given tree node. Given a classification
problem with J different classes, this function is non-negative and it is defined over the set of
J-tuples (p1, p», ..., ps), where each p; is the probability that a case belongs to class j in the current
sub-tree. It is obvious that ) p; = 1. Any function ¢ must have the following properties [1]:
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e The function ¢ has a unique maximum at (1/J,1/J,...,1/J). The impurity measure is largest
when there is the same number of instances belonging to each one of the problem classes (that
is, the classes are distributed evenly in the node).

e The function ¢ has J minima at ¢(1,0,...,0), ¢(0,1,...,0),...,¢(0,0,...,1). Moreover, ¢
equals 0 at those points. In other words, a tree node is pure when it contains only examples
of a given class.

e The function ¢ is symmetric with respect to pi,ps,...,ps.

w9

. Classical splitting rules

Every possible test which splits the training dataset into several sub-sets will eventually lead to
the construction of a complete decision tree, provided that at least two of the generated sub-sets
are not empty. The final aim of the decision tree learning process is, however, to build a decision
tree which conveys interesting information in order to make predictions and classify previously
unseen data.

Each possible test must be evaluated using heuristics and, as most TDIDT algorithms perform
a one-ply lookahead heuristic search without backtracking (i.e., they are greedy), the selected
heuristic plays an essential role during the learning process. Several splitting rules have been
proposed in the literature. Here, we review some of the most relevant ones.

3.1. Information gain: entropy

ID3 [15] attempts to maximize the information gain achieved through the use of an attribute 4;
to branch the tree by minimizing function [

14) =Y pla,)H(ClA,)

where 4; is the attribute used to branch the tree, M; is the number of different values for 4;, p(4;;) is
the probability of attribute 4; taking its jth value, and H(C|4;;) is the classification entropy of the
set of instances where 4; takes its jth value. This classification entropy is defined as

J
H(Cl4y) = - ZP(Ck|Azj) log, p(Cil4y)
k=1
where J is the number of classes in our classification problem and p(Cy|4;;) is the probability of an
example belonging to class C; given that its attribute 4, takes its jth value.

The information conveyed by a message depends on the probability of the message p and can be
expressed in bits as — log, p, which corresponds to the number of yes—no questions needed to pick
out a given message among 1 /p different messages. For example, if we had 256 different messages
(as the number of ASCII characters), each message would convey eight bits. The probability of a
randomly chosen example belonging to class C; is p(Cy) and the information obtained is — log, p.
The information we expect to obtain when classifying any example in the training set is
— > p(Cy) log, p(Cy). This quantity is known as the set entropy.
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The information needed to transmit the splitting of the training set 7 into M; sub-sets 7; equals
> p(T))H(T;), where p(T;) is the probability of an example belonging to sub-set 7; and H(7}) is the
class1ﬁcat10n entropy of the set 7;.

The information gain we obtaln by splitting 7 into the 7} sub-sets equals H(T) — > p(T;)H(T;),
where H(T) is the entropy of 7. The information gain achleved by alternative splits is compared to
select the best partition of 7. We just have to check — ) p(7;)H(T;) since H(T) is the same for
every possible split.

This heuristic favors the construction of decision trees with a high branching factor: ““it has a
strong bias in favor of tests with many outcomes™ [17, p. 23]. This fact gave origin to the gain ratio
criterion, which is the main topic of the following sub-section.

3.2. The gain ratio criterion

Using the information gain as partition criterion, we would tend to build decision trees using
key or nearly key attributes. We would obtain the optimum tree regarding to its information gain,
but this tree could be useless to classify unseen data.

We can still resort to Information Theory in order to attain a normalization criterion. Let us
consider the information content of the message which indicates not the class of a given instance,
but the value of a given predictive attribute (i.e., an attribute which can be used to branch the
tree). The information content of such a message is — ) p(4;;) log, p(4;;). Using this value, it is
possible to redefine the previous splitting criterion as follows:

H(C) — 327, p(dy)H(C|4y)
_Zj:d?( i) log, p(4;;)

This ratio is the splitting criterion used in C4.5 [17]. When the training set partition is nearly
trivial, the value of R(4;) approaches zero. We have to choose the attribute which maximizes R(4;)
and whose information gain is at least equal to the average gain obtained with the analyzed
partitions of the training set.

Since in practice we have access to many more training examples than different problem classes,
the gain ratio criterion avoids the construction of decision trees which classify input instances
attending to their keys (i.e. their identifiers).

It has been observed that the gain criterion tends to build quite unbalanced decision trees, a
property which inherits from its predecessor, the information gain. Both heuristics are based on
entropy measures which favor uneven training set partitions when one of them is of great purity
(when all its training instances belong to the same problem class), even when it does not have a
high support (that is, when it covers only a few training examples).

R(4) =

3.3. Gini index of diversity

Gini index tries to minimize the impurity contained in the training sub-sets generated after
branching the decision tree. It employs the following function:



F. Berzal et al. | Data & Knowledge Engineering 44 (2003) 31-48 35

M;

G(4:) =Y p(4;)G(C|Ay)

=
J J

G(Cldy) = = p(Celdiy)p(=Celdyy) =1 = p*(Cildy)
P e

where 4; is the attribute used to branch the tree, J is the number of classes in our classification
problem, M; is the number of different values for 4;, p(4;;) is the probability of attribute 4; taking
its jth value, p(Cy|4;;) is the probability of an example belonging to class C; given that its attribute
A; takes its jth value, and p(—Cy|4;;) is 1 — p(Ci|4;).

Gini index measures the class diversity in the nodes of a decision tree. This splitting criterion is
used, for example, in CART [1].

As we can see from the above expressions, these formulae are quite similar to the ones we
employed to define the information gain: we have just substituted p(—~Cy|4;;) for —log, p(Ci|4;;).
In fact, both are alternative impurity measures and share their properties (remember Section 2).
However, in binary decision trees, Gini index prefers splits that put the largest class into one pure
node, and all others into the other, while the entropy criterion, for instance, puts its emphasis on
balancing the sizes at the two children nodes [2].

3.4. Other criteria

Lopez de Mantaras [10] proposed an alternative to the gain ratio normalization. He prevented
the information gain bias towards selecting variables which fragment the training set using a
distance metrics:

H(C) = 331, p(4y)H(Cl4y)
(CklA, ) 1o 1(Cildy)
_Z/ 1 Zk 1 - log, N ’
Taylor and Silverman [21] proposed the mean posterior improvement (MPI) criterion as an al-
ternative to the Gini rule. Their MPI criterion was defined for binary trees and, although it can be
extended to handle multi-way decision trees, it does not yield noteworthy results in latter situa-
tion. Maintaining the notation used in this paper, their criterion would be formulated as

Hﬁlp(ck’Aij)
MPI(4 Hp . (1— W)

k=1

LM(4) =

Other splitting criteria have been proposed in the literature during the last decade. Most of
them are impurity functions as the ones presented in this section, which emphasize the purity of
the split sub-sets, although other measures fall into different categories [11]:

e Some of them measure the difference among the split sub-sets using distances or angles, empha-
sizing the disparity of the sub-sets (on binary trees, typically).

e Others are statistical measures of independence (a y* test, for example) between the class pro-
portions and the split sub-sets, emphasizing the reliability of class predictions.
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[11] includes an good survey of splitting criteria, a study on the correlation among them, and
empirical results for binary decision trees. Splitting criteria for binary decision trees are also
studied in [20].

Other research papers also include comparisons of several splitting rules [3,13]. For example,
[13] compares six of them and points out that understandability could be another evaluation
criterion for evaluating alternative splitting rules (apart from the commonly used tree size and
classification accuracy). Unfortunately, no standard measure exists for the understandability
criterion. More theoretical studies on splitting rules can be found in [2,8]. The interested reader
can find additional information and related references in Murthy’s extensive survey [14].

Most of the proposed splitting rules improve the decision trees accuracy only a little in some
cases (if any), but they are always more complicated than their predecessors, i.e. Gini index and
the information gain criterion. In the following section, we propose two impurity-based splitting
criteria which are simpler than other proposals found in the literature without sacrificing classi-
fication accuracy.

4. Alternative splitting rules

“Everything should be made as simple as possible, but not simpler.” Albert Einstein.

Our aim is to obtain alternative splitting criteria whose formulation may be easier to under-
stand for end users, since the company executives and analysts who work with decision trees may
feel reluctant to accept classification models just because they do not understand how they are
obtained. In this section we describe the process which led us to a pair of alternative splitting
criteria which can be described in terms of simple language that involves example counts rather
than probability or Information Theory.

4.1. MaxDif

Impurity-based splitting criteria (such as information gain maximization) minimize entropy.
The probability corresponding to the most common class is the term which increases the overall
entropy the least. This probability is thus a candidate maximization criterion to measure the
goodness of a given partition. We are tempted, therefore, to use the following function:

K(4;) = ZP(A,-,-)K(C!A,-;)

K(Cldy) = max p(Cil4y)

where 4, is the attribute used to branch the tree, M; is the number of different values for 4;, p(4;;) is
the probability of attribute 4; taking its jth value, and P(C|4;;) corresponds to the evaluation of
each child node. This evaluation function is just the maximum class probability p(Ci|4;;) in the
child node resulting from the jth value of attribute 4; (i.e. the maximum class probability in the
training set given that attribute A4; takes its jth value).

In some sense, K is a purity-based measure. This function meets the three properties of any
impurity function (see Section 2) if we consider the transformation Z,A; p(4)/J — K(4;). Since
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the function K(4;) is symmetric, its minimum is obtained at (1/J,1/J,...,1/J), and its maxima
are achieved at (1,0,...,0), (0,1,...,0),..., and (0,0,...,1); then the above transformation
demonstrates it is a purity measure.

This simple criterion, however, tends to build decision trees with a high branching factor, as
happens with the entropy measure used by ID3.

For example, let us consider the example shown in Table 1. The first column in this table in-
dicates the attribute used to branch the tree. The second one shows the number of different values
for that attribute, that is, the number of branches resulting from branching the tree using that
attribute. Finally, the third one collects the class distribution of the training examples for each
attribute value (i.e. the number of examples belonging to each class in every child node of the tree
resulting from using the specified attribute to branch the tree).

Let us assume that the probability p(X) is estimated as n(X)/N, where n(X) is the number of
examples verifying a property X and N is the total number of examples. If we used the above
criterion, we would obtain K(4,) = (90 + 85)/200 = 175/200 and K(4,) = (90 + 84 + 2)/200 =
176/200. This would lead us to employ attribute 4, to branch the tree, which is not the best
decision in this case because the training dataset is unnecessarily fragmented and one of the re-
sulting branches, the one corresponding to 4, third value, holds an insufficient number of training
examples to build a robust classification model. The presence of the slightest amount of noise in
those training examples would render useless the inferred classification model.

The situation could be even worse if we had a primary key in our dataset with 200 different values.
In that case, we would have an attribute which partitions the training set in 200 sub-sets, each one
containing just one training instance. Using the above function K, we would evaluate this attribute
Agkey and obtain K (Ayey) = (1 +1+4---+1)/200 = 200/200, which is the maximum value of our
purity function K since all the child nodes are pure (i.e. containing examples of just one class).

We could reduce this side effect just by redefining the previous function as

Zp i)K(Cl4;)

jeu
U = {j|max{n(Cy|4;)} = S}
K(Cl4,) = max p(Cil4)

where S is a user-established support threshold and n(Cy|4;;) is the number of examples in the
training set which belong to class C; and take the jth value for attribute A;.

Table 1
A classification problem with three classes
Attribute #Values Class distribution
A 2 (90, 10, 0)
(0, 85, 15)
A 3 (90, 9, 0)
(0, 84, 13)

0, 2,2)
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The support threshold S indicates the minimum number of examples we are interested in to
branch the decision tree further. In other words, we consider that training sets with less than S
examples are useless to build a good classifier since they do not constitute a representative sample
of the population we try to model. Support thresholds have been traditionally used in association
rule mining [7] and they can be considered as the simplest pre-pruning technique for decision trees.

It should be noted, however, that our use of a support threshold differs from the conventional
stopping rules used by many TDIDT software packages. We use this threshold just to cancel the
contribution of small sub-sets such as the one which appears when using the 4, attribute to branch
the tree in the example shown in Table 1. Those small contributions to the node purity do not
convey any meaningful information for the decision tree construction process because the re-
sulting training sub-sets cannot be used to build reliable classification models.

We could set S to 1 by default, but in this case our classification model would be affected by any
outlier in the training dataset (as most TDIDT classifiers are), and we would need further post-
processing to improve our classifier accuracy. Typical decision tree pruning techniques would be
useful here. Setting a value higher than 1 for the support threshold would automatically discard
any small sub-sets. In the above example, if we had set S = 3, then K’'(4;) = (90 + 85)/200 =
175/200, K'(4>) = (90 + 84)/200 = 174/200, and K'(Ayey) = 0/200. Thus, we would use 4; to
branch the tree, which seems to be the wiser decision at this point.

Taking into account that P(Cy|4;;) = n(Ci|4;;)/n(4;;) and also that P(4;;) = n(4;;)/N;, being N;
the total number of training examples for which attribute 4; is not null, n(4,;;) the number of
instances which take the jth value of its ith attribute, and n(Cy|4;;) the number of examples be-
longing to class C; which take A4; jth value, we can reformulate function K'(4;) in the following
way:

K'(4) =+ S K(Cl4y)

I jeu
U = {j|max{n(Ci|4;)} = S}

K/(C|Al]) = m/le n(Ck‘A,])

If there are no missing values, the factor 1/N; will be the same for every attribute and can be
eliminated from the above expression. In this way, we obtain a splitting rule which is just a sum of
support counts in accordance with our quest for simple partition rules.

We have observed, however, that the K’ heuristics favors the construction of decision trees with
the lowest possible branching factor (that is, binary trees), even when the attribute used to branch
the tree is irrelevant to the classification task at hand. For example, in problems where one class
accounts for most of the training examples, it would not be difficult to obtain decision trees which
use binary tests over numeric attributes even when those attributes are not predictive. These tests
send most of the training examples to one sub-tree and leave only a few for the other sub-tree. The
heuristics is mixed up just because the majority class is very frequent in the large training sub-set
and the small sub-set contributes a little to make the selected test attractive.

The unwanted effect which we have described in the previous paragraph could be compensated
somewhat by adding an additional factor #U (i.e. the cardinality of U) to the K’ function:
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K"(4;) = #;VU > K'(Cl4y)

i jeu
U = {jlmax{n(Ci|4;)} = S}

K/(C|AU) = ml?,X l’l(Ck |AU)

Intuitively, the summation in the above expression counts the number of examples which will be
correctly classified within the training dataset (without branching the tree further). Dividing by N;,
we normalize that count to be able to compare different attributes which may have missing values.
The final factor #U is used to bias the decision tree learning process towards flat decision trees
(that is, trees with more interesting branches).

The use of the factor #U combined with the minimum support threshold S provides an artificial
mechanism to avoid using primary keys to branch the tree, although it lacks a theoretical basis. It
does not guarantee the construction of good decision trees, although it sometimes improves the
results obtained with more complex heuristics such as C4.5 gain ratio criterion.

We have obtained a well-behaved splitting criterion, although its artificial complexity is not
desirable. The apparent dead end we have reached in our journey from K(4;) to K”(4;) can be
avoided if we reformulate the original maximization problem.

Let us consider using the difference between the number of examples belonging to the most
common class and the rest of examples in a particular node. This criterion subtracts the number of
cases which would be misclassified in a leaf to the number of correctly classified instances.
Mathematically,

ZP i7)D(C|4y)

D(Cl4;) = max {p(Cil4y) = p(=Cildy)}

This heuristics, which we call MaxDif, behaves properly without making it more complex and is
equivalent to the original function K when there are no missing values in the training dataset,
since p(Cy|4;;) — p(—Ci|4;;) = 2p(Ci|4;;) — 1. As its predecessor, it satisfies the properties of any
impurity-based splitting criterion if we reverse its sign.

We can also express MaxDif using support counts in order to obtain the following expressions:

1 M;
¥ ZD(C|A,—,)
=

D(Cl4;)) = max {n(Cil4y) — n(=Cil4,)}
Using again the example shown in Table 1, we would obtain the following figures:

(90— 10) + (85— 15) _80+70 _ 150
200 200 200

D(4,) =
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(90— 9) + (84— 13)+(2—2) 81 +71+0 152

D(4,) = =

(42) 200 200 200" and, even worse
(1-0)+(1—=0)+---4+(1—=-0) 200

Dltiey) = 200 =200

The above results show that this criterion still lacks the necessary properties needed to avoid the
effects caused by noise and isolated outliers in the training dataset. Those outliers make the de-
cision trees overfit the training dataset and the additional pruning step a necessary evil (evil in the
sense that it requires additional computing resources).

We should also face the problem of primary keys and small training sub-sets. As we did before,
we can introduce a minimum support threshold constraint in the following way:

D(4) =+ 3 D(ClA,)

U = {jlmax{n(Cy|4;)} = S}
D(Cl4yj) = max {n(Celdy) — n(~Ci|4;) }

After some unsuccessful attempts, we have finally obtained a relatively simple splitting criterion
which performs well in most situations (see our experimental results in Section 5): we decide how
to branch a decision tree just by counting how many examples are sent to each sub-tree and the
number of instances corresponding to the most common class in each sub-tree. We subtract the
number of misclassified examples in a node from the number of correctly classified instances
(supposing that the tree will not be branched further) and that is our heuristic evaluation of that
node. We aggregate our evaluations of every child node using a weighted average as usual, and
obtain the figure which will be used to decide how to branch the tree (that is, which attribute will
be used to branch the tree at the current node).

An additional minimum support constraint is included to prevent the effects of keys and
outliers in the training set. The minimum support constraint can actually be used with any other
impurity-based splitting criterion in order to improve the performance of any TDIDT algorithm.
The effect of primary keys and isolated outliers on TDIDT classifiers can be removed just by using
a minimum support threshold above 1 tuple. A higher support threshold, between 1% and 5% of
the training dataset size, would also allow us to prevent the undesirable contribution of scarcely
populated branches to the overall node impurity measure and, thus, it can be used to address the
tendency of entropy-based impurity measures to build quite unbalanced decision trees, as dis-
cussed in Section 3.2.

4.2. Generalized Gini

Some similarities exist between Gini index and our MaxDif criterion when no minimum
support threshold is used: the summation is substituted by a maximum and the product by
a subtraction. This suggests us another approach in our quest for easy-to-understand splitting
rules.
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We could try to generalize Gini index criterion using @ and @ operators instead of the typical
arithmetic operations:

GG\ (4;) = ZP(AU)GGl(C’AU)

GG\(Cl4;) = & J(P(Ck|Atj) ® p(—Cil4y))

.....

It should be noted that the first equation is not altered because it just performs a weighted sum of
the child nodes evaluations.

The formula above is still too complex to be amenable to further simplification, so we will use
an alternative formulation of Gini index:

Zp i7)G(Cl4y)

J
G(Cldy) =1— ZPZ(CHAU)
k=1
Loosening the above formulae, we obtain the following expressions:

GG, (4 Z p(4;)GG,(C)A4y)
j=1
GGy(Cldy) =1~ @ J(P(Ck\Aij) © p(Cil4y))
We can simplify the above equation by removing the ® operator, since p> < p between 0 and 1,

and underestimating the node impurity in GG,(C|4;;) does not significantly affect the overall
heuristics performance. In this way, we obtain the following expressions for our division rule:

GG;(4 Z p(4;)GG5(C|4y)

When we are trying to split the training set, we assume that a local decision will yield good
results whatever happens hereafter. If we have to choose between a node whose class distribution
is (0.6,0.4,0.0) and another node (0.6,0.3,0.1), we usually opt for the former one, although we
have no evidence that it will lead to a better decision sub-tree. For example, there could exist a
three-valued attribute which differentiates among the three classes perfectly in the apparently
worst node (0.6,0.3,0.1). Just by branching the sub-tree at that point we would attain a 100%
classification accuracy, something which might be impossible if we had chosen the supposedly
more promising first alternative (0.6,0.4,0.0).
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When we arrive at a node in the decision tree during TDIDT learning, we cannot assume that a
given node will lead to a better decision tree than another one if the probability of the most
common class is the same in both nodes. That would be the training classification accuracy for
both nodes if we were unable to branch the tree further. Thus, we could simplify our splitting rule
taking that fact into account:

GG(A) =Y p(4,)GG(ClA,)

.....

This function, in fact, is quite similar to the original function K (4;) we used to derive MaxDif and,
unlike that initial attempt, it allows the construction of good decision trees keeping the splitting
criterion complexity to a minimum.

Using support counts instead of probabilities and a minimum support threshold as we did in
MaxDif, we obtain the following equations:

4 1 4
GG (4;) = 1 > GG,(Cly)

I jeu
U = {j|max{n(Cy|4;)} = S}

GG;(C|AU) = }’l(Alj) — maX I’l(Ck‘AU)

.....

We just have to count the number of instances belonging to the most common class in each node
to obtain the number of examples which would be misclassified if the tree were not branched
further (i.e. GG, (C|4;;)), and aggregate those counts into a unique value in the usual way.

4.3. Summary

In this section, we have obtained two functions which can be used as splitting criteria to build
multi-way decision trees:

Zp i)D(Cl4y)

D(Cl4y) = max {p(Cildyy) — p(=Cil4;) }

and

GG(A) =Y p(4,)GG(ClA,)
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As previous splitting rules, they perform a weighted sum of impurity measurements over the
resulting sub-trees. It is remarkable that both of them depend only on the probability of the most
common class in each sub-tree and still yield excellent results. In fact, that probability is the only
true evidence we have to compare alternative splits when building decision trees.

Moreover, a minimum support threshold can be used to improve TDIDT performance in the
presence of keys and noise in the training dataset. This threshold provides a simple and powerful
mechanism to avoid common problems in decision tree learning, as the tendency to build quite
unbalanced trees when some branches are pure even if they hold only a few training examples. It
should be noted that this threshold could also be used with other splitting criteria.

5. Empirical results

We have chosen multi-way splits because knowledge workers (the executives, analysts, and
managers who employ decision support systems) feel more comfortable with them than with
binary trees. Binary trees have less leaves, but are deeper and their training time is longer, as
indicated by [11]. Shallow trees are preferred because they are easier to understand and multi-way
decision trees tend to be more shallow.

Tables 2 and 3 summarize the results we have obtained building multi-way decision trees for
some datasets obtained from the UCI Machine Learning Repository (http://www.ics.uci.edu/
~mlearn/MLRepository.html). Table 2 shows TDIDT classification accuracy before pruning and
Table 3 shows the results when pessimistic pruning is used (with CF = 0.25).

Primary keys were removed from those datasets in order to avoid the problems they cause when
the information gain criterion is used: algorithms such as ID3 would directly choose them to
branch the tree and the resulting classifiers would be useless.

All the classification accuracy results reported in this paper were obtained using 10-CV (10-fold
cross-validation) without any kind of a minimum support constraint because primary keys were
removed beforehand.

The accompanying tables include the results obtained using three splitting rules based on In-
formation Theory concepts (the entropy-based information gain criterion used by ID, the gain
ratio criterion proposed in C4.5, and Lopez de Mantaras’ alternative to the gain ratio normal-
ization (LM)), as well as Gini index and our two proposals. The intermediate criteria we have
described in the preceding section are not included in these tables because they were explained just
to illustrate the process which led us to MaxDif and GG.

All the studied splitting criteria exhibit a similar behaviour. No rule is always better than the
others. Even ID3 information gain criterion can be better than its alleged improvements (C4.5
gain ratio and Lopez de Mantaras’ rule) when primary keys are removed from the training da-
taset. In fact, in problems with a small number of classes, all criteria should produce similar
results [2]. The accuracy differences among the alternative splitting criteria are not significant
(below 2% on average when the deviation among the experiments in a given cross-validation is
above 4% on average).

Even without primary keys in the input datasets, the use of a minimum support threshold can
improve the overall classifier accuracy in specific situations. As a mechanism to avoid overfitting,
such a threshold cancels the contributions of small data subsets to the overall purity measure for a
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Table 2

TDIDT classification accuracy obtained with different splitting criteria using 10-CV (before pruning)
Dataset Entropy (%) GainRatio (%) LM (%) Gini (%) GG (%) MaxDif (%)
Audiology 76.00 81.81 78.70 75.45 80.45 74.68
Australian 80.72 78.70 82.46 80.87 80.14 84.35
Bupa 62.40 62.03 63.26 66.45 60.62 63.01
Car 94.73 94.50 94.56 94.50 89.07 93.46
Glass 72.40 71.10 72.40 69.13 72.79 71.95
Hayes-Roth 73.75 75.00 74.38 73.13 74.38 74.38
Heart 74.07 71.85 70.00 73.33 68.52 71.85
Tonosphere 89.45 91.74 93.18 90.32 87.18 90.89
Iris 95.33 95.33 94.00 95.33 94.67 94.67
Mushroom 100.00 100.00 100.00 100.00 100.00 100.00
Nursery 98.89 98.80 98.80 98.89 97.39 97.77
Pima 71.22 70.17 67.68 70.83 66.91 72.50
Soybean 89.60 92.97 93.41 91.65 88.00 87.56
Splice 91.24 91.72 91.34 90.17 85.35 82.80
TicTacToe 85.29 86.96 86.44 85.49 83.72 83.93
Titanic 79.05 79.05 79.05 79.05 79.05 79.05
Votes 94.93 95.16 94.93 94.93 95.62 95.85
Waveform 75.92 76.50 71.72 75.26 72.00 76.86
Wine 94.41 95.52 94.93 89.95 92.19 89.93
Average 84.12 84.64 84.25 83.85 82.48 83.28

Table 3

TDIDT classification accuracy obtained with different splitting criteria using 10-CV and pessimistic pruning (CF = 0.25)
Dataset Entropy (%) GainRatio (%) LM (%) Gini (%) GG (%) MaxDif (%)
Audiology 72.51 81.36 79.57 75.18 77.81 71.58
Australian 85.07 84.06 85.51 86.52 83.62 85.07
Bupa 64.71 64.36 61.53 65.87 59.18 62.43
Car 93.46 92.88 93.00 93.00 85.60 92.07
Glass 70.50 68.70 71.47 71.49 72.90 71.49
Hayes-Roth 72.50 73.75 73.13 73.75 72.50 74.38
Heart 80.00 75.93 74.07 77.04 73.33 72.96
Tonosphere 88.60 91.45 92.62 89.75 89.17 90.32
Iris 95.33 95.33 94.67 95.33 94.67 93.33
Mushroom 100.00 100.00 100.00 99.99 100.00 100.00
Nursery 96.17 96.17 96.17 96.52 95.08 94.35
Pima 72.65 72.38 70.16 71.60 68.73 71.46
Soybean 90.62 93.70 93.71 91.95 88.00 88.15
Splice 93.51 94.08 93.80 93.54 89.48 89.83
TicTacToe 84.35 83.82 83.62 84.35 83.82 83.93
Titanic 79.05 79.05 79.05 79.05 79.05 79.05
Votes 94.71 95.86 95.86 94.95 94.03 94.48
Waveform 76.90 76.94 72.76 76.16 74.66 76.98
Wine 94.97 94.41 94.48 90.45 91.60 89.35

Average 84.51 84.96 84.48 84.55 82.80 83.22
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given node in the decision tree. For example, using the Bupa dataset and MaxDif as impurity
measure, if we set the minimum support threshold to 5% of the tuples in that dataset, we improve
classifier accuracy up to 67% before pruning and outperform the results obtained without any
support constraint. Different support constraints could be suitable for other datasets and there are
datasets for which there is no suitable support constraint. It should be taken into account that the
suitable value for the support threshold depends on the nature of the training dataset and on the
pre-processing steps performed to clean this dataset. It should also be noted that a minimum
support threshold in the splitting criterion can be applied to any of the splitting rules discussed in
this article, since its use is orthogonal to the splitting rule used to branch the tree. The above
considerations explain why we have not included a separate set of experiments using different
support thresholds.

Our simplified splitting criteria proposals seem to obtain worse results in problems where there
are many different classes and a small number of training examples for some of them (as in the
SOYBEAN dataset, which includes 19 different classes and only 683 examples), just because
focusing their attention only on the most common class provides less information to build an
accurate decision tree in that kind of problems. In fact, when the number of classes is high, the
original Gini index may also produce splits that are too unbalanced [2] and degrade its perfor-
mance. This problem would disappear if we could define a taxonomy for the problem classes and
build a decision tree of decision trees (in some sense, a second order decision tree classifier). This is
an open research problem which could eventually lead to interesting results.

Table 4
Average number of tree nodes using different splitting criteria and 10-CV (before pruning)
Dataset Entropy GainRatio LM Gini GG MaxDif
Audiology 113.6 100.2 97.0 108.6 115.8 119.9
Australian 197.3 230.1 193.7 210.3 297.4 99.7
Bupa 140.8 139.0 180.0 144.4 220.0 354
Car 373.3 369.1 369.4 373.0 567.1 382.3
Glass 76.0 74.6 82.8 90.0 111.0 58.8
Hayes-Roth 53.1 53.5 53.4 53.3 53.7 53.7
Heart 80.2 87.5 98.7 83.8 136.2 35.6
Tonosphere 37.0 37.0 43.2 44.0 87.0 23.2
Iris 16.4 16.4 18.0 16.4 26.2 7.2
Mushroom 29.0 25.0 25.0 29.6 29.9 31.3
Nursery 1126.4 1125.4 1124.8 1070.1 1848.1 1993.4
Pima 232.8 241.2 309.2 244.8 401.0 55.2
Soybean 157.5 124.6 127.7 157.8 203.9 190.9
Splice 491.7 466.8 465.2 513.2 824.6 883.5
TicTacToe 300.3 291.6 294.6 295.2 363.1 351.3
Titanic 15.0 15.0 12.0 15.0 14.1 15.0
Votes 54.4 58.1 56.5 55.9 96.9 78.9
Waveform 862.0 862.8 1146.0 985.2 1721.2 479.0
Wine 15.8 14.8 12.4 18.6 29.4 18.4

Relative tree complexity (%) 150 151 168 158 238 100
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Table 5
Average number of nodes using different splitting criteria, 10-CV and pessimistic pruning (CF = 0.25)

Dataset Entropy GainRatio LM Gini GG MaxDif
Audiology 38.6 67.0 55.4 42.1 51.7 62.2
Australian 43.6 30.7 64.3 42.7 48.9 37.6
Bupa 62.8 63.4 107.2 60.2 72.4 27.2
Car 164.8 162.0 163.0 161.6 193.2 153.3
Glass 41.8 44 .4 54.6 46.6 50.0 41.0
Hayes-Roth 24.8 24.8 24.8 24.8 24.9 24.9
Heart 35.6 36.6 44.4 38.2 333 28.2
Tonosphere 25.4 28.4 19.8 26.6 24.6 21.8
Iris 7.0 7.0 8.2 7.0 7.0 6.2
Mushroom 29.0 25.0 25.0 28.5 28.8 29.1
Nursery 406.4 406.4 406.4 400.4 498.0 494.8
Pima 110.6 116.8 163.0 122.0 127.6 41.6
Soybean 87.3 73.9 77.1 91.0 110.6 105.2
Splice 134.6 140.0 144.8 136.3 171.4 121.3
TicTacToe 123.9 120.6 120.8 124.8 120.6 118.1
Titanic 15.0 15.0 12.0 15.0 14.1 15.0
Votes 13.3 12.9 13.0 13.5 8.4 5.3
Waveform 549.8 582.8 807.8 581.0 786.6 373.8
Wine 9.6 9.6 8.6 11.6 15.2 14.6
Relative tree complexity (%) 126 127 149 129 137 100

During our experiments we have also found that MaxDif tends to build smaller decision trees
than its counterparts before and after pruning, as Tables 4 and 5 illustrate. In fact, it seems that
MaxDif trades a little accuracy for a noteworthy decrease in tree complexity. Unfortunately, no
theoretical result supports this fact.

Despite the problems encountered with some particular datasets, our experiments show that
our alternative splitting rules obtain results which are always comparable to those obtained by
more complex criteria. It should be noted that our proposals are not random. They verify some
properties which are required for any impurity-based measure without unnecessary complexities.
Since they are easier to formulate (and, thus, easier to understand by non-expert users) than
previous proposals, we believe that their use can be justified.

6. Conclusion

No particular splitting rule does significantly improve classification accuracy for decision tree
classifiers in TDIDT algorithms using standard splitting criteria such as ID3 information gain.

However, some of them are notably more complex to formulate than others. This fact makes
TDIDT algorithms somewhat mysterious and harder to understand for lay users. In turn, this
poor understanding of the process which leads to a given decision tree can provoke some reti-
cences from executives, analysts and managers. These knowledge workers often refrain from using
classification models because they do not understand how they are obtained.
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In this paper we have presented two alternative splitting criteria whose formulation is easier to
understand for people without previous exposure to Information Theory concepts and advanced
statistics topics. Both rules depend on the probability of the most common class in each sub-tree
exclusively, and both of them obtain results which, even though they are not significantly better
than previous criteria, are comparable to the outcome of more complex rules.
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