
COMMUNICATIONS OF THE ACM December 2002/Vol. 45, No. 12 97

Both researchers and practi-
tioners accept that decision

support systems (DSSs) have spe-
cific needs that cannot be prop-
erly addressed by conventional
information systems. Online
Transaction Processing (OLTP)
systems work with relatively
small chunks of information at a
time, while DSS applications
require the analysis of huge
amounts of data. Online Analyti-
cal Processing (OLAP) [1], data
mining [3] and data warehouses
[7] emerged during the last
decade in order to fulfill the
expectations of executives, man-
agers, and analysts (also known
as knowledge workers).

We have also witnessed the
flourishing of component-based
frameworks during the last few
years (see Communications’ special
section on object-oriented appli-
cation frameworks, Oct. 1997
and Communications’ special sec-
tion on component-based enter-
prise frameworks, Oct. 2000).
These frameworks are intended to
help developers to build increas-
ingly complex systems, enhancing
productivity and promoting com-
ponent reuse in well-defined pat-
terns. Nowadays those systems are
widely used in enterprises
throughout the world, but they

usually provide only low-level
information processing capabili-
ties, since they are OLTP-applica-
tion-oriented. Here, we propose
the development of custom-tai-
lored component-based frame-
works to solve DSS problems,
although this approach can be
extended to a wide range of scien-
tific applications.

A Component-based Data
Mining Framework
An open framework for the devel-
opment of data mining algorithms
and DSSs should include capabili-
ties to analyze huge datasets, clus-
ter data, build classification
models, and extract associations
and patterns from input data. The
conceptual model for such a sys-
tem is shown in Figure 1.

The data miner (the user of the
system) has to analyze large
datasets and he or she needs to
make use of data mining tools to
perform a task. Data is gathered
and data mining algorithms are
used in order to build knowledge
models that summarize the input
data. Those models may provide
the information our user needs, or
they may just suggest new ways to
explore the available data. More-
over, those knowledge models
could be used as input to other

mining algorithms in order to
solve second-order data mining
problems. Both knowledge models
and dataset metadata might be
stored for later use in the back-end
database (for instance, the Object
Pool).

Component-based frameworks
such as Enterprise JavaBeans (see
java.sun.com/products/j2ee) and
Microsoft .NET (see www.
microsoft.com/com/net) are
based on a common architectural
pattern, a.k.a. the Enterprise
Component Framework [5]. A
simplified representation of this
pattern is shown in Figure 2.
This pattern, modeled as a para-
meterized collaboration in UML
[6], contains six classifier roles
which are depicted as rectangles:

• Client. Any entity that requests
a service from a component in
the framework. These requests
could be performed using spe-
cial-purpose data mining query
languages, for example, OLE
DB for Data Mining (see
www.microsoft.com/data/oledb).

Instead of calling the com-
ponent directly, the client
internally uses a pair of proxies
that relay calls from the client
to the component. This level of
indirection is, however, hiddenPA

U
L

W
A

TS
O

N

Fernando Berzal, Ignacio Blanco,
Juan-Carlos Cubero, and Nicolas Marin

Component-based Data Mining
Frameworks
OLAP Vs. OLTP in the middle tier.

98 December 2002/Vol. 45, No. 12 COMMUNICATIONS OF THE ACM

from the client perspective; it
makes location transparency
possible and, when needed, it
supports message interception.

• Factory proxy. Performs object
factory operations, common to
all framework components
(such as create or find) and
facilitates class methods.

• Remote proxy. Handles opera-
tions specific to each kind of
component (such as inspection,
parameter setting, and so
forth) and facilitates
instance methods.

• Component. Both
datasets and knowledge
models are components in
a data mining framework.
Data mining algorithms
could also be considered
as components on their
own, but they are just
used through factory
proxies to build knowl-
edge models.

• Container. Represents the
framework’s runtime envi-
ronment, and holds the
components and both
proxy roles. This containment
is shown by aggregation links in
Figure 2.

The container supports dis-
tributed computing services,
such as security, interprocess
communication, persistence,
and hot deployment. Transac-
tions are also supported by
enterprise frameworks (such as
EJB/.NET frameworks) but are
not needed in a data mining
environment. Such an environ-
ment, however, needs schedul-
ing, monitoring, and
notification mechanisms to
manage data mining tasks.

Commercial application servers
may be suitable for e-business
applications, but they lack the
stricter control of computing
resources data mining systems
require. This shortage is also
applicable to a wide range of
scientific applications by exten-
sion. Custom-tailored frame-
works should include
capabilities such as CPU/mem-
ory/database usage monitoring,

resource discovery, reconfig-
urable load balancing, and a
higher degree of freedom for
programmers to implement dis-
tributed algorithms.

• Persistence service. Permits the
storage and retrieval of frame-
work components. This persis-
tence service can be managed
and coordinated by the con-
tainer. Dataset metadata, dis-
covered knowledge models, and
user session information are all
candidates to be saved for
future use in the back-end data-
base (the Object Pool). This

back-end database is also useful
to provide a reliable computing
environment (preserving the
system state against power out-
ages, for example).

Design Principles
We believe every component-
based, data mining framework
should focus its design efforts
into two major objectives:

• Transparency. Both for
users and program-
mers. Users do not
need to be aware of the
underlying complexity
of the system, while
programmers should
be able to create new
framework compo-
nents just by imple-
menting a core set of
well-defined interfaces.

• Usability [4]. As any
other software system,
data mining systems
are used by people and
system usability is crit-
ical for user accep-

tance, provided that knowledge
workers are not usually knowl-
edgeable about computers. Users
should be able to store anything
they can reuse in future sessions,
or even share the information
they obtain. This groupware
focus is especially important in
data mining applications, where
the discovered knowledge must
be properly represented and
communicated.

Component-based
Dataset Modeling
Let us consider, for example, the
case of assembling the datasets

Datasets

User

Knowledge
Models

ClassifiersData Mining Algorithm

Data Mining System Graphical User Interface

Oracle
DBMS

SQL Server
DBMS

ASCII
Files

Persistence
Service

Back-end Database
(Object Pool)

JDBC
Wrapper

ODBC
Wrapper

ASCII
Wrapper

Figure 1. A conceptual model for DSSs.

Technical Opinion

COMMUNICATIONS OF THE ACM December 2002/Vol. 45, No. 12 99

that are used as input to build
knowledge models. These
datasets may come from hetero-
geneous information sources.

Data mining tools usually work
with tables in the relational sense.
Each table contains a set of fixed-
width tuples that can be obtained
either from relational databases or
any other information
source (ASCII or XML
files, for example).

All tabular datasets
have a set of columns
(also called attributes).
Each one of them has a
unique identifier and an
associated data type
(strings, numbers, dates,
and so forth). A flexible
tool should allow the
specification of order
relationships among
attribute values and the
grouping of attribute
values to define concept hierar-
chies.

A data mining system should
also be capable of performing het-
erogeneous queries over different
databases and information
sources. The independently
retrieved datasets, in fact, might
be processed further in order to
join them with other datasets
(data integration), to standardize
concept representations and elimi-
nate redundancies (data cleaning),
to compute aggregations (data
summarizing), or just to discard
part of them (data filtering).

All the aforementioned opera-
tions involving datasets can be
performed using powerful formal
models and query languages.
However, typical users are not
prepared to use such models and

languages to define the cus-
tomized datasets they need. They
would probably reject a system
that requires them to learn any
complex formalism. In order to
improve system acceptance, we
propose a bottom-up approach. A
family of dataset-building compo-
nents should provide users with

all the primitives they need to
build their own datasets from the
available data sources:

• Wrappers are responsible for
providing uniform access to dif-
ferent data sources. Data stored
as sets of tables in relational
databases can be retrieved per-
forming standard SQL queries
through call-level interfaces such
as JDBC and ODBC. Data
stored in other formats (locally
as ASCII/XML files or remotely
in DSTP servers [see
www.ncdm.iuc.edu/ dstp], for
example) require specific wrap-
pers. In fact, any accessible infor-
mation source requires its own
suitable wrapper.

• Joiners are used to join multi-
ple datasets. They allow the
user to combine information
coming from different sources.
Joiners are also useful to
include lookup fields into a
given dataset (as in data ware-
house star schemas) and to
specify relationships between

two datasets from the
same source (for example,
master/detail relation-
ships).

• Aggregators summarize
datasets in order to pro-
vide a higher-level view of
the available data. Aggre-
gations are useful in a
wide range of OLAP
applications, where trends
are much more interesting
than particular details.
Common aggregation
functions include MAX,
MIN, TOP, BOTTOM,

COUNT, SUM, and AVG.
• Filters perform a selection over

the input dataset to obtain sub-
sets of the original input
dataset. In data mining applica-
tions, filters can be used to per-
form samplings, to build
training datasets (such as when
using cross-validation in classi-
fication problems), or just to
select the data we are interested
in for further processing.

• Transformers are also needed
to modify dataset columns.

Encoders are used to encode
input data, for example, pro-
viding a uniform encoding
schema to deal with data com-
ing from different sources.
Encoders are useful to ensure
that real-world entities are
always represented in the same

Client

Container

Factory
proxy

Component

Persistence
Service

Object
Pool

Remote
proxy

Figure 2. A simplified representation of the
Enterprise Component Framework.

100 December 2002/Vol. 45, No. 12 COMMUNICATIONS OF THE ACM

way, even when represented dif-
ferently in different data
sources. In fact, the same entity
could even have several repre-
sentations in a given data
source. This kind of compo-
nent is useful for data cleaning
and integration.
Extenders are used to append

new fields to a given dataset.
Those fields, known as calcu-
lated fields, are useful for man-
aging dates and converting
measurement units. The value
of a calculated field is com-
pletely determined by the other
field values in the same tuple. A
calculated field could be speci-
fied using a simple arithmetic
expression (including operators
such as +, -, *, and /) or even
more complicated algorithms
(involving if statements and
table lookups, for example).

These components can be
combined easily in tree-like struc-
tures to build highly personalized
datasets. These datasets are
amenable to standard query opti-
mization techniques, therefore
improving system performance.
Using our approach, even com-
puter-illiterate users are able to
use complex data mining systems
by linking dataset modeling
components.

Commercial enterprise applica-
tion servers (the containers in the
framework pattern) are currently
restricted to OLTP applications,
and we believe it is time for sys-
tem architects to focus on higher-
level information processing
capabilities in order to take
advantage of the vast computing

resources available with current
corporate intranets. Although we
have proposed a component-
based framework model for
building a data mining system
here, our approach is extendible
to any CPU-intensive computing
application.

References
1. Chaudhuri, S. and Dayal, U. An overview of

data warehousing and OLAP technology.
ACM SIGMOD Record, Mar. 1997.

2. Codd, E.F., Codd, S.B., and Salley, C.T.
Providing OLAP to User-Analysts: An IT
Mandate. Hyperion Solutions Corporation,
Sunnyvale, CA., 1998; www.hyperion.com/
products/whitepapers.

3. Han, J. and Kamber, M. Data Mining: Con-
cepts and Techniques. Morgan Kaufmann,
San Francisco, 2000.

4. Juristo, N., Windl, H. and Constantine, L.
(Eds.) Usability engineering. IEEE Software
18, 1 (Jan./Feb. 2001).

5. Kobryn, C. Modeling components and
frameworks with UML. Commun. ACM 43,
10, (Oct. 2000), 31–38.

6. Object Management Group. OMG Unified
Modeling Language Specification, 1.4, 1st. Ed.
(Sept. 2001);
www.omg.org/technology/uml/.

7. Widom, J. Research problems in data ware-
housing. In Proceedings of the 1995 Interna-
tional Conference on Information and
Knowledge Management (CIKM'95), Nov.
29–Dec. 2, 1995, Baltimore, MD.

Fernando Berzal (berzal@acm.org) is a
researcher at the Intelligent Databases and
Information Systems research group in the
Department of Computer Science and
Artificial Intelligence at the University of
Granada, Spain.
Ignacio Blanco (iblanco@ual.es) is an
assistant professor at the University of
Almeria, Spain.
Juan-Carlos Cubero (jc.cubero@
decsai.ugr.es) is an associate professor in the
Department of Computer Science and
Artificial Intelligence at the University of
Granada, Spain.
Nicolas Marin (nicm@descsai.ugr.es) is
an assistant professor in the Department of
Computer Science and Artificial Intelligence
at the University of Granada, Spain.

© 2002 ACM 0002-0782/02/1200 $5.00

c

Technical Opinion

