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Abstract. It has been pointed out that the usual framework to assess association rules, based on support and confidence as
measures of importance and accuracy, has several drawbacks. In particular, the presence of items with very high support can
lead to obtain many misleading rules, even in the order of 95% of the discovered rules in some of our experiments. In this paper
we introduce a different framework, based on Shortliffe and Buchanan’s certainty factors and the new concept ofvery strong
rules, and we discuss some intuitive properties of the new framework. Both the theoretical properties and the experiments
we have performed show that we can avoid the discovery of misleading rules, improving the manageability and quality of the
results.

1. Introduction

Nowadays, the amount of data stored in databases increases in an impressive way. One of the
main motivations for data storage is to have the opportunity to analyze them, in order to obtain useful
knowledge. For this purpose, the area of Knowledge Discovery was born. Knowledge Discovery is
concerned with finding novel, previously unknown and potentially useful knowledge in databases.

The main step of the knowledge discovery task is called data mining, and it is concerned with finding
frequent patterns in data. One of the main problems in the field of Data Mining is how to assess the
patterns that are found in data, such as association rules in T-sets [1]. We call T-set a set of transactions,
where each transaction is a subset of items. Association rules are “implications” that relate the presence
of items in the transactions of a T-set. More formally, given a set of itemsI and a T-setR on I, an
association rule is an expression of the formA ⇒ C, with A,C ⊂ I, A ∩ C = ∅, whereA andC are
calledantecedent andconsequent of the rule respectively.

The classical example of T-set is a set of market baskets, where each basket is a transaction that
contains a subset of products (items). Rules extracted from market basket relate the presence of items in
the same basket, for example “every basket that contains milk contains bread”, notedmilk ⇒ bread.
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The usual measures to assess association rules are support and confidence, both based on the concept
of support of anitemset (a subset of items). Given a set of itemsI and a T-setR on I, the support of an
itemsetI0 ⊆ I is

supp(I0) =
|{τ ∈ R | I0 ⊆ τ}|

|R| (1)

i.e., the probability that the itemset appears in a transaction ofR. The support of the association rule
A⇒ C in R is

Supp(A⇒ C) = supp(A ∪ C) (2)

and its confidence is

Conf(A⇒ C) =
supp(A ∪ C)
supp(A)

=
Supp(A⇒ C)
supp(A)

. (3)

Support is the percentageof transactions where the rule holds. Confidence is the conditional probability
of C with respect toA or, in other words, the relative cardinality ofC with respect toA. The techniques
for mining association rules attempt to discover rules whose support and confidence are greater than
user-defined thresholds calledminsupp andminconf respectively. These are calledstrong rules.

However, several authors have pointed out some drawbacks of this framework that lead to find many
more rules than it should [3,6,9]. The following example is from ([3]): in the CENSUS database of
1990, the rule “past active duty in military⇒ no service in Vietnam” has a very high confidence of0.9.
This rule suggests that knowing that a person served in military we should believe that he/she did not
serve in Vietnam. However, the itemset “no service in Vietnam” has a support over95%, so in fact the
probability that a person did not serve in Vietnamdecreases (from 95% to 90%) when we know he/she
served in military, and hence the association is negative. Clearly, this rule is misleading.

In this paper we introduce a new framework to assess association rules in order to avoid to obtain
misleading rules. In Section 2 we describe some drawbacks of the support/confidence framework.
Section 3 contains some related work. Section 4 is devoted to describe our new proposal. Experiments
and conclusions are summarized in Sections 5 and 6, respectively.

2. Drawbacks of the support/Confidence framework

2.1. Confidence

Confidence is an accuracy measure of a rule. In [5], Piatetsky-Shapiro suggested that any accuracy
measureACC should verify three specific properties in order to separate strong and weak rules (in the
sense of assigning them high and low values respectively). The properties are the following:

P1 ACC(A ⇒ C) = 0 whenSupp(A ⇒ C) = supp(A) supp(C). This property claims that any
accuracy measure must test the independence (though values other than 0 could be used, depending
on the range ofACC).

P2 ACC(A ⇒ C) monotonically increases withSupp(A ⇒ C) when other parameters remain the
same.
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Table 1
(A) The T-setR1. (B) Support of several
itemsets inR1

A

i1 i2 i3 i4

1 0 1 0
0 0 0 1
0 1 1 1
0 1 1 1
1 1 1 1
1 1 1 1

B
Itemset Support
{i1} 1/2
{i2} 2/3

{i1, i2} 1/3

P3 ACC(A⇒ C) monotonically decreases withsupp(A) (or supp(C)) when other parameters remain
the same.

Now we show that confidence does not verify all the properties:

Proposition 1. Confidence does not verify the property P1.

Proof. Here is a counterexample: letI1 = {i1, i2, i3, i4} be a set of items, and letR1 be the T-set on
I1 of table 1.A. Rows represent transactions, and columns represent items. A cell containing “1” means
that the item/column is present in the transaction/row. Table 1B shows the support of three itemsets with
items inI1. Sincesupp({i1})supp({i2}) = 1/3 = supp({i1, i2}), i1 andi2 are statistically independent
and hence the confidence should be0. However,Conf({i1} ⇒ {i2}) = = 1/3

1/2 = 2/3 �= 0.

Proposition 2. Confidence verifies the property P2.

Proof. Trivial regarding Eq. (3).

Proposition 3. Confidence verifies the property P3 only for supp(A).

Proof. It is easy to see forsupp(A) regarding Eq. (3). It is also trivial to see thatP3 does not hold with
respect tosupp(C) sincesupp(C) does not appear in Eq. (3), andsupp(A ∪ C) andsupp(A) remain
the same by the conditions ofP3.

In summary, confidence is not able to detect statistical independence (P1) nor negative dependence
between items (the examples in the introduction), because it does not take into account the support of
the consequent.

2.2. Support

A common principle in association rule mining is “the greater the support, the better the itemset”,
but we think this is only true to some extent. Indeed, itemsets with very high support are a source of
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misleading rules because they appear in most of the transactions, and hence any itemset (despite its
meaning) seems to be a good predictor of the presence of the high-support itemset.

An example is{i3} in Table 1A. It is easy to verify that any itemset involving onlyi1 andi2 is a perfect
predictor of{i3} (any rule with{i3} in the consequent has total accuracy, that is, confidence is 1 for
all such rules). Also,Conf({i4} ⇒ {i3}) = 0.8, that is pretty high. But we cannot be sure that these
associations hold in real world. In fact what holds most times is negative dependence or independence,
as the examples in the introduction showed.

As we have seen, an accuracy measure verifyingP1 - P3 can solve the problem whenConf(A ⇒
C) � supp(C) (i.e., negative dependence or independence). But whensupp(C) is very high and
Conf(A⇒ C) > supp(C), we can obtain a high accuracy. However, there is a lack of variability in the
presence ofC in data that does not allow us to be sure about the rule. Fortunately, this situation can be
detected by checking thatsupp(C) is not very high, but no method to check this has been incorporated
into the existing techniques to find association rules.

These problems lead to obtain much more rules than it should. Suppose we have a T-setR on a set of
itemsI, from where a set of reliable rulesS has been obtained. Think of adding an itemivf to I and
to include it in the transactions ofR so thativf has a very high support. It is very likely that addingivf

to the consequent of any rule, both support and accuracy of the rules don’t change. The same can be
expected for support if we add the item to the antecedent, so we can obtain in the order of three times
more rules (the original set, and those obtained by addingivf to the antecedent, or to the consequent).
But we must also consider that sinceivf is very frequent, almost any itemset could be a good predictor
of the presence ofivf in a transaction, so we may obtain in the order of2|I| more rules. For example,
if |I| = 10 (without ivf ) and|S| = 50 (a modest case), by addingivf we could obtain1124 misleading
rules in the worst case! Even if we restrict ourselves to find rules with only one item in the consequent,
we are talking about1074 rules in the worst case.

The problem is clearly that the user is overwhelmed with a big amount of misleading rules. The
situation gets worse exponentially if we add two or more items with very high support. Now think of
mining a real database such as the CENSUS data employed in [3], where|I| = 2166 and there are many
items with support above95%. It is clear that a new framework to assess association rules is needed.

3. Related work

Several authors have proposed alternatives to confidence, see [5,3,9,10,8] among others. In this section
we briefly describe two of them.

3.1. Conviction

Conviction was introduced in [3] to be

Conv(A⇒ C) =
supp(A) supp(¬C)
supp(A ∪ ¬C)

(4)

where¬C means the absence ofC. Its domain is(0,∞), 1 meaning independence. Values in(0, 1)
mean negative dependence. In our opinion, the main drawback of this measure is that its range is not
bounded, so it is not easy to compare the conviction of rules because differences between them are not
meaningful and, much more important, it is difficult to define a conviction threshold (for example, some
rules considered interesting in [3] have conviction values of1.28, 2.94, 50 and∞, this last meaning total
accuracy). Also, from (4) it is easy to see that conviction does not verify propertyP3 for supp(A).
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3.2. Interest

In [9], theχ2 test is used to find dependencies between items. However, the value of theχ 2 statistic is
not suitable to measure the degree of dependence, so interest is used instead. The interest is defined as

Int(A⇒ C) =
Supp(A⇒ C)
supp(A) supp(C)

(5)

Interest verifiesP1–P3, the value 1 meaning independence. But as conviction, its range is not bounded
so it has the same drawbacks. Moreover, interest is symmetric (i.e. the interest ofA⇒ C andC ⇒ A is
the same), and this is not intuitive in most of the cases. Association rules require to measure the strength
of implication in both directions, not only the degree of dependence.

4. A new framework to assess association rules

4.1. Measuring accuracy

To assess the accuracy of association rules we use Shortliffe and Buchanan’scertainty factors [7]
instead of confidence. Certainty factors were developed to represent uncertainty in the rules of the
MICYN expert system, and they have been recognized as one of the best models in the development of
rule-based expert systems (however, they have been also used in data mining [4,6]).

Definition 1. We name certainty factor of A⇒ C to the value

CF (A⇒ C) =
Conf(A⇒ C) − supp(C)

1 − supp(C)
(6)

if Conf(A⇒ C) > supp(C), and

CF (A⇒ C) =
Conf(A⇒ C) − supp(C)

supp(C)
(7)

if Conf(A⇒ C) < supp(C), and 0 otherwise.

The certainty factor is interpreted as a measure ofvariation of the probability thatC is in a transaction
when we consider only those transactions whereA is. More specifically, a positive CF measures the
decrease of the probability thatC is not in a transaction, given thatA is. A similar interpretation can be
done for negative CFs.

By Eqs (6) and (7) it is clear that CFs take into account both the confidence of the rule and the support
of C. Moreover, they verify propertiesP1–P3, as the following propositions show:

Proposition 4. Certainty factors verify P1.

Proof. If Supp(A ⇒ C) = supp(A) supp(C) thenConf(A⇒ C) = supp(C) and then by definition
CF (A⇒ C) = 0.

By this property, CFs are an independence test. But CFs can also detect the kind of dependence.
If there is a positive dependence betweenA andC thenSupp(A ⇒ C) > supp(A) supp(C), so
Conf(A ⇒ C) > supp(C) and henceCF (A ⇒ C) > 0. If there is a negative dependence then
Conf(A⇒ C) < supp(C) and henceCF (A⇒ C) < 0.
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Proposition 5. Certainty factors verify P2.

Proof. Confidence verifiesP2 and, when confidence increases andsupp(C) remains the same, CF
increases (see Eqs (6) and (7) ). Hence, CF increases withSupp(A⇒ C) when other parameters remain
the same.

Proposition 6. Certainty factors verify P3.

Proof. CF verifiesP3 for supp(A) since confidence does (see the proof ofP2). Now we shall proveP3
for supp(C).

– SupposeCF (A ⇒ C) < 0. Then, by (7) it is clear that ifsupp(C) increases thenCF (A ⇒ C)
decreases.

– SupposeCF (A ⇒ C) > 0. CF is a function of confidence andsupp(C). By the conditions of
P3 we assume that confidence remains the same (i.e., it is a constant). If we derive with respect to
supp(C) we obtain

CF ′(A⇒ C) =
Conf(A⇒ C) − 1

(1 − supp(C))2

soCF ′(A⇒ C) � 0, and henceCF (A⇒ C) monotonically decreases withsupp(C).
– Let Conf(A ⇒ C) = c0 with 0 < c0 < 1. Let us increase monotonicallysupp(C) from 0 to

1. While supp(C) < c0 it holds thatCF (A ⇒ C) > 0 and monotonically decreases, as we have
shown. Whensupp(C) reachesc0 thenCF (A ⇒ C) = 0, so it keeps decreasing. Finally, when
supp(C) > c0 it holds thatCF (A ⇒ C) < 0, so it has decreased, and it keeps decreasing as
supp(C) increases, as we have shown.

Hence,CF monotonically decreases withsupp(C) when other parameters remain the same.

Other interesting properties of CFs are the following:

Proposition 7.

– CF (A⇒ C) � Conf(A⇒ C)
– CF (A⇒ C) = Conf(A⇒ C) iff CF (A⇒ C) = 1 and supp(C) < 1.

Proof.

– If CF (A⇒ C) � 0 thenCF (A⇒ C) � Conf(A⇒ C). If CF (A⇒ C) > 0 then

CF (A⇒ C) =
Conf(A⇒ C) − supp(C)

1 − supp(C)
Hence,

Conf(A⇒ C) = CF (A⇒ C)(1 − supp(C)) + supp(C) =

= CF (A⇒ C) + (supp(C) − CF (A⇒ C)supp(C)).

SinceCF (A⇒ C) ∈ (0, 1], we obtainCF (A⇒ C)supp(C) � supp(C), so(supp(C)−CF (A⇒
C)supp(C)) > 0 and

Conf(A⇒ C) = CF (A⇒ C) + (supp(C) −CF (A⇒ C)supp(C)) �

� CF (A⇒ C)
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– Letsupp(C) < 1. ThenCF (A⇒ C) = Conf(A⇒ C) iff (supp(C)−CF (A⇒ C)supp(C)) =
0 iff CF (A⇒ C) = 1.

Hence, using the same threshold, we shall obtain always less rules using CFs than using confidence.
Indeed, we are avoiding the discovery of misleading rules that are not detected by confidence. At the
same time, perfect rules are recognized by both measures. A particular case issupp(C) = 1, where
confidence finds a perfect rule but CF doesn’t, because there is independence betweenA andC, so
CF (A⇒ C) = 0.

The following propositions relate CFs to conviction and interest.

Proposition 8. Let CF (A⇒ C) > 0 and supp(C) < 1 and supp(A) > 0. Then

CF (A⇒ C) = 1 − 1
Conv(A⇒ C)

(8)

Proof.

Conv(A⇒ C) =
supp(A)supp(¬C)
supp(A ∪ ¬C)

=
supp(A)(1 − supp(C))
supp(A) − supp(A ∪ C)

Hence

1
Conv(A⇒ C)

=
supp(A) − supp(A ∪ C)
supp(A)(1 − supp(C))

=
1 − Conf(A⇒ C)

1 − supp(C)

and

−1
Conv(A⇒ C)

=
Conf(A⇒ C) − 1

1 − supp(C)
=
Conf(A⇒ C) − supp(C) + supp(C) − 1

1 − supp(C)

= CF (A⇒ C) +
supp(C) − 1
1 − supp(C)

Then

1
Conv(A⇒ C)

= −CF (A⇒ C) − supp(C) − 1
1 − supp(C)

= 1 − CF (A⇒ C)

Thus

CF (A⇒ C) = 1 − 1
Conv(A⇒ C)

Proposition 9. Let CF (A⇒ C) < 0 and supp(C) > 0. Then

CF (A⇒ C) = Int(A⇒ C) − 1 (9)

Proof.

Int(A⇒ C) =
Supp(A⇒ C)
supp(A)supp(C)

=
Conf(A⇒ C)
supp(C)

=
Conf(A⇒ C) − supp(C) + supp(C)

supp(C)

= CF (A⇒ C) + 1

Hence

CF (A⇒ C) = Int(A⇒ C) − 1
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Corollary 1. Let CF (A⇒ C) < 0. Then CF (A⇒ C) = CF (C ⇒ A)

Corollary 2. CF (A⇒ C)CF (C ⇒ A) > 0

From these properties, it is immediate that negative certainty factors are a non-directional measure of
the strength of negative dependence, while positive certainty factors take into account the direction of
the association.

From now on, we will call a rulestrong if its support and CF are greater than user-specified thresholds
minsupp andminCF respectively. Let us remark that we are interested only in rules with positive CF,
meaning positive dependence among items, and hence we shall assumeminCF > 0.

Of course, it could be argued that negative associations with a high enough absolute value of CF are
strong rules, since they relate the presence ofA to theabsence of C and that can be interesting, see [9].
However, if we are interested in that kind of rules it is better to considerX and¬X as itemsets in the
search since otherwise, rules relating for example the absence ofA to the presence ofC (also interesting)
cannot be discovered.

4.2. Solving the support drawback

A simple solution would be to use a maximum support thresholdmaxsupp to solve the support
drawback, and to avoid reporting those rules involving itemsets with support abovemaxsupp. However,
the user should provide the value formaxsupp. In order to avoid this we introduce the concept ofvery
strong rule.

Definition 2. The rule A⇒ C is very strong if both A⇒ C and ¬C ⇒ ¬A are strong rules.

The rationale behind this definition is thatA ⇒ C and¬C ⇒ ¬A are logically equivalent, so we
should look for strong evidence of both rules to believe that they are interesting. This definition can help
us to solve the support drawback since whensupp(C) (or supp(A)) is very high,Supp(¬C ⇒ ¬A) is
very low, and hence the rule¬C ⇒ ¬A won’t be strong andA⇒ C won’t be very strong.

By definition, a very strong rule must verify:

1. Support conditions:

(a) Supp(A⇒ C) > minsupp
(b) Supp(¬C ⇒ ¬A) > minsupp

2. CF conditions:

(a) CF (A⇒ C) > minCF
(b) CF (¬C ⇒ ¬A) > minCF

So there are two new conditions for a rule to be interesting, 1(b) and 2(b). But, in practice, only one
CF condition must be checked, as a result of the following proposition:

Proposition 10. If CF (A⇒ C) > 0 then CF (A⇒ C) = CF (¬C ⇒ ¬A).

Proof. We shall use the usual probability notation, i.e.,Conf(X ⇒ Y ) = p(Y |X) andsupp(X) =
p(X). By Bayes’ Rule

p(A|¬C) =
p(¬C|A)p(A)
p(¬C)

=
(1 − p(C|A)) p(A)

p(¬C)



F. Berzal et al. / Measuring the accuracy and interest of association rules 229

and

p(¬A|¬C) = 1 − p(A|¬C) = 1 − (1 − p(C|A)) p(A)
p(¬C)

Let us use Eq. (6) to obtainCF (¬C ⇒ ¬A). If we obtain a positive value, that will be the CF of
the rule, since in that caseConf(¬C ⇒ ¬A) > supp(¬A) (i.e.,p(¬A|¬C) > p(¬A)). Otherwise, we
should have used Eq. (7).

CF (¬C ⇒ ¬A) =
p(¬A|¬C) − p(¬A)

1 − p(¬A)
=

1 − (1−p(C|A))p(A)
p(¬C) − (1 − p(A))

p(A)

=
p(A) − (1−p(C|A))p(A)

p(¬C)

p(A)
= 1 − 1 − p(C|A)

p(¬C)
=

(1 − p(C)) − (1 − p(C|A))
(1 − p(C))

=
p(C|A) − p(C)

1 − p(C)
= CF (A⇒ C).

SinceCF (A ⇒ C) > 0, we have used the correct expression and we have shown thatCF (¬C ⇒
¬A) = CF (A⇒ C).

This property is not only useful, but also intuitive. Conviction also verifies it, but confidence and
interest don’t, as the following propositions show:

Proposition 11. Conviction verifies proposition 10.

Proof. Immediate since conviction is related to positive CF by proposition 8.

Proposition 12. Confidence does not verify proposition 10.

Proof. Immediate since confidence does not take into account the probability ofC.

Proposition 13. Interest does not verify proposition 10.

Proof. Immediate since interest is related to negative CF by proposition 9 and, in general, negative CFs
don’t verify the property.

Another interesting property is the following

Proposition 14.

– Let supp(A) + supp(C) > 1. Then A⇒ C is very strong iff A⇒ C is strong.
– Let supp(A) + supp(C) < 1. Then A⇒ C is very strong iff ¬C ⇒ ¬A is strong.
– Let supp(A) + supp(C) = 1. Then A⇒ C is strong iff ¬C ⇒ ¬A is strong.

Proof. As we have shown, the certainty factor of a rule and its counter-reciprocal is the same when
mincf � 0. With respect to support, it is easy to verify that

Supp(¬C ⇒ ¬A) = 1 − supp(C) − supp(A) + Supp(A⇒ C) (10)

Hence,
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– If supp(A) + supp(C) > 1 thenSupp(¬C ⇒ ¬A) > Supp(A ⇒ C), soSupp(A ⇒ C) >
minsupp impliesSupp(¬C ⇒ ¬A) > minsupp.

– If supp(A) + supp(C) < 1 thenSupp(¬C ⇒ ¬A) < Supp(A ⇒ C), soSupp(¬C ⇒ ¬A) >
minsupp impliesSupp(A⇒ C) > minsupp.

– If supp(A) + supp(C) < 1 thenSupp(¬C ⇒ ¬A) = Supp(A ⇒ C), soSupp(¬C ⇒ ¬A) >
minsupp iff Supp(A⇒ C) > minsupp.

4.3. Implementation

One of the advantages of our new framework is that it is easy to incorporate it into existing algorithms.
Most of them work in two steps:

Step 1. Find the itemsets whose support is greater thanminsupp (calledfrequent itemsets). This step is
the most computationally expensive.

Step 2. Obtain rules with accuracy greater than a given threshold from the frequent itemsets obtained in
step 1, specifically the ruleA⇒ C is obtained from the itemsetsA ∪C andA.

To find very strong rules, step 1 remains the same. In step 2 we obtain the CF of the rule from the rule
confidence andsupp(C), both calculated in step 1 (sinceA ∪ C is frequent,A andC also are), and we
verify the CF condition. Support condition 1(a) is ensured becauseA∪C is a frequent itemset. Support
condition 1(b) is also easy to verify since

supp(¬C ∪ ¬A) = 1 − supp(C) − supp(A) + supp(A ∪ C) (11)

andsupp(C), supp(A) andsupp(A ∪ C) are available. An important feature of these modifications is
that they keep both the time and space complexity of the algorithms.

Finally, let us remark that support condition 1(a) is usually employed to bound the search for frequent
itemsets in step 1 (hence reducing both time and space employed). Further reduction can be obtained by
also using 1(b). This can benefit from the following property:

Proposition 15. If supp(A ∪C) > 1 −minsupp then supp(¬C ∪ ¬A) < minsupp.

Proof. If supp(A ∪ C) > 1 −minsupp then1 − supp(A ∪ C) < minsupp. Clearlysupp(A ∪ C) +
supp(¬C ∪ ¬A) � 1, sosupp(¬C ∪ ¬A) � 1 − supp(A ∪ C) < minsupp.

The last proposition also suggests very strong rules implicitly use a valuemaxsupp of at most 1-
minsupp. A description about how to use 1.b. to use this to reduce time and space expended in the search
can be found in [2].

5. Experiments

5.1. Experiments with the CENSUS database

To illustrate the problems we have discussed, and to show the performance of our proposals, we have
performed some experiments with the CENSUS database. The database we have worked with was
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Table 2
Some attributes from the CENSUS database

Name Description
AMARITL Marital status
AHGA Education
ACLSWKR Class of worker
AHSCOL Enrrolled in edu. inst. last wk.
ARACE Race
ASEX Sex
PENATVTY Country of birth

Table 3
Some rules obtained from the CENSUS database

#R Rule Conf. CF
1 [AHGA = Children]⇒ [ASEX = Male] 0.5 0.05
2 [AHGA = High School Graduate]⇒ [ASEX = Female] 0.54 0.06
3 [ASEX = Male] ⇒ [ARACE = White] 0.84 0.03
4 [ASEX = Female]⇒ [ARACE = White] 0.83 0
5 [AHGA = Children]⇒ [ACLSWKR = Not in universe] 1 1
6 [AHGA = Children]⇒ [AMARITL = Never married] 0.99 0.99

extracted by T. Lane and R. Kohavi using the Data Extraction System from the census bureau database,
found at http://www.census.gov/ftp/pub/DES/www/welcome.html.

Specifically, we have worked with a test database containing 99762 instances, obtained from the
original database by using MineSet’s MIndUtil mineset-to-mlc utility.

The database contains 40 attributes, but we have employed only those in Table 2. Let us remark that
in relational databases, the usual interpretation is that items take the form[attribute=value].

5.1.1. A first experiment
In a first step, we looked for rules involving items associated to all the attributes except PENATVTY.

Also, we restricted the search to rules with only one item in both antecedent and consequent. Using
minsupp = 0.05 andminconf = 0.5 we obtained 52 rules. Some of them are shown in Table 3.

Rules 1 and 2 are clearly misleading, and in fact the certainty factor of both rules is close to 0, meaning
independence between antecedent and consequent. But their confidence is not low, as it might be. The
reason is that, assuming independence between education and sex, the expected conditional probability
is 0.5 because sex takes only two values and they are approximately equally distributed on data. Hence,
only performing a comparison between the conditional and the a-priori probabilities of the consequent
(as certainty factors do) we can detect that the accuracy of these rules is uninteresting.

Rules 3 and 4 are also misleading, and in this case the problem is the very high support of the item
[ARACE = White] in the database (around 84%). Hence, almost any other item seems to be a good
predictor of the presence of white people (there is 12 misleading rules of this kind). For rules 3 and 4
certainty factors provide a value around 0 meaning independence, that is, the intuitively correct result
again. No rule with [ARACE= White] in the consequent is reported when using mincf= 0.5. From
these rules, the highest certainty factor is 0.31, that of rule

[AMARITL = Married-civilian spouse present]⇒ [ARACE = White]
Finally, rules 5 and 6 are expected rules. The first one claims that children are not involved in any class

of work, and the second one states that children have never been married. As such, their confidence is
close to 1, and we can see that the value of certainty factor is also close to 1. That shows how certainty
factors are suitable to detect rules with very high accuracy.
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Table 4
Some rules obtained from the CENSUS database (II)

#R Rule Conf. CF Sup. Rec.
5 [AHGA = Children]⇒ [ACLSWKR = Not in universe] 1 1 0.23 0.498
6 [AHGA = Children]⇒ [AMARITL = Never married] 0.99 0.99 0.23 0.567
7 [AHGA = Children]⇒ [AHSCOL = Not in universe] 0.99 0.99 0.23 0.063
8 [AMARITL = Married-c.sp.pres.]⇒ [AHSCOL = Not in u.] 0.99 0.92 0.41 0.061
9 [AMARITL = Widowed]⇒ [AHSCOL = Not in universe] 0.99 0.99 0.05 0.063

10 [AMARITL = Divorced]⇒ [AHSCOL = Not in universe] 0.99 0.96 0.06 0.063
11 [AHGA = Bachelors degree]⇒ [AHSCOL = Not in universe] 0.98 0.72 0.09 0.061
12 [AHGA = High School G.]⇒ [AHSCOL = Not in universe] 0.98 0.71 0.23 0.059

Table 5
Some rules obtained from the CENSUS database (III)

#R Rule Conf. CF
13 [AHGA = Children]⇒ [PENATVTY = USA] 0.95 0.62
14 [ACLSWKR= Private]⇒ [PENATVTY = USA] 0.85 −0.03
15 [ACLSWKR= Not in universe]⇒ [PENATVTY = USA] 0.9 0.13
16 [PENATVTY = USA] ⇒ [ACLSWKR = Not in universe] 0.51 0.01
17 [ARACE= Black]⇒ [PENATVTY = USA] 0.9 0.41
18 [ARACE= White]⇒ [PENATVTY = USA] 0.9 0.17
19 [PENATVTY = USA] ⇒ [ARACE = White] 0.85 0.11
20 [AMARITL = Never married]⇒ [PENATVTY = USA] 0.91 0.29
21 [AMARITL = Married-c.sp.present]⇒ [PENATVTY = USA] 0.86 −0.02
22 [AMARITL = Divorced]⇒ [PENATVTY = USA] 0.9 0.13
23 [AHGA = Bachelors degree]⇒ [PENATVTY = USA] 0.87 −0.01
24 [AHGA = High School G.]⇒ [PENATVTY = USA] 0.89 0.07
25 [AHGA = Some college but not degree]⇒ [PENATVTY = USA] 0.9 0.17
26 [ASEX= Male] ⇒ [PENATVTY = USA] 0.88 0.01
27 [PENATVTY = USA] ⇒ [ASEX = Female] 0.51 0
28 [ASEX= Female]⇒ [PENATVTY = USA] 0.88 0
29 [PENATVTY = USA] ⇒ [AHSCOL = Not in universe] 0.93 0
30 [AHSCOL= Not in universe]⇒ [PENATVTY = USA] 0.88 0

The same experiment was repeated but using mincf= 0.5 instead of confidence. In this occasion,
we obtained only 8 rules. They are shown in Table 4. The last column shows the support of the
counter-reciprocal rule¬C ⇒ ¬A.

The first two of them were rules 5 and 6, already shown in Table 3. They are indeed very strong rules
for minsupp� 0.23 (remark that the maximum support for a very strong rule is 0.5), so they are highly
reliable.

The rest of the rules seems to be obtained because of the very high support of the item [AHSCOL=
Not in universe] (around 93%). But it is not very clear to us whether someone is interesting or not.

Though the support of the consequent is very high, certainty factors don’t find rules 7–12 uninteresting
since the confidence is greater than the support of the consequent (see Section 2.2). Except rules 11
and 12, the rest are rules with a very high accuracy, almost perfect. However, it should be noted that
these rules are not very strong rules when minsupp� 0.07, so we are able to detect that the support of
the consequent is very high, and hence we have a criterion that can help to make a decision about the
importance of the rules.

In summary, using minsupp= 0.07 and looking for very strong rules with certainty factors, only rules
5 and 6 are found when mincf= 0.5, instead of around 50 using confidence with minconf= 0.5. Clearly,
we are avoiding the discovery of misleading rules.
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Table 6
Number of rules obtained by using confidence and CF

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.98 1
minconf= α 1185 1078 1066 1034 971 839 706 494 96 0
mincf = α 795 633 549 431 304 190 104 96 20 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

alpha

800

700

600

500

400

300

200

900

1200

1100

1000

100

Number of rules
minC=alpha

minCF=alpha

Fig. 1. Graphical representation of Table 6

5.1.2. Adding PENATVTY
We have repeated the experiment adding the items associated to PENATVTY. The values of the attribute

PENATVTY are the different countries, but the distribution of the values gives [PENATVTY= USA] a
very high support of around 88%. As a consequence is again the case that, using confidence, almost any
other item seems to be a good predictor that a person was born in USA. In our experiments, we obtained
70 rules (52 where those obtained in the previous experiment). Table 5 shows the 18 new rules obtained.

Among rules in Table 5, apart from rule 13, only rule 17 has a rather remarkable cf of 0.41. For
the rest of rules we can see in general very high values of confidence and very low values of certainty
factors, showing the independence that hold between items. This independence is intuitive in many
cases. For example, it is difficult to think that being male/female and being born in USA are dependent
(rules 26–28).

That’s why only 9 rules are found when using mincf= 0.5: the 8 rules of the first experiment without
PENATVTY, and rule 13. This rule makes some sense, though its CF is not an excellent value, and it is
very strong for minsupp� 0.1. What is remarkable here is that using certainty factors, the number of
rules obtained when adding an item with very high support ([PENATVTY= USA] in this case) is almost
the same, while the number of rules obtained by using confidence grows, because many misleading rules
appear.

5.2. Other databases

Now we are interested in showing how using the ordinary support/confidence framework affects the
number of rules, but considering rules with one or more items in the antecedent. Table 6 and Fig. 1 show
the results of one of our experiments on a T-set, containing more than225 ·106 transactions and 10 items,
obtained from data about surgical operations in the University Hospital of Granada [6]. By using CFs,
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Table 7
Number of rules obtained with and without items “blood” and “prosthesis”

mincf 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
With B/P 795 633 549 431 304 190 104 96 96 0
Without B/P 140 108 95 76 54 28 10 8 8 0
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Fig. 2. Graphical representation of Table 7

rules with negative dependence or independence are discarded, and hence much fewer rules are obtained
(we used a valueminsupp = 0.01).

We also detected the influence of the items with very high support “blood” and “prosthesis”. Their
meaning is that blood transfusion and prosthesis are involved in the operation, respectively. Table 7 and
Fig. 2 show how the number of rules is reduced if attributes “blood” and “prosthesis” are not considered.

For a minimum accuracy of0.8, the number of rules has been reduced from 494 (using confidence) to
8. Among the discarded rules, 398 are rules with negative dependence or independence, 32 have “blood”
in the consequent, 32 have “prosthesis” in the consequent, and 24 are obtained from the 8 very strong
rules by adding to the antecedent “blood”, or “prosthesis”, or both. They were all misleading rules.
Other experiments, involving the CENSUS database, are detailed in [2] and show similar results.

6. Conclusions

By their theoretical properties, very strong rules based on CFs are a suitable framework to discard
misleading rules. Our experiments on real-world databases confirm this point. CFs are successfully used
in expert systems where the task is predictive, and it is well-known that CFs of rules can be obtained
from humans, so we think that CFs are meaningful and that improves the understanding and comparison
of rules, and the definition ofmincf. The concept of very strong rule is very intuitive, since it is based on
the logical equivalence between a rule and its counter-reciprocal, and it captures the idea that, since both
rules are equivalent, finding evidence of both in data enforces our belief that the rule is important. An
additional advantage of the new framework is that the introduction of new support conditions can help
to reduce the time and space expended in the first step of the discovery process, the search for frequent
itemsets. We shall follow this research avenue in the future.
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