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Abstract

In this paper, we propose a new algorithm for efficient association rule mining, which we apply in order to discover
interesting patterns in relational databases. Our algorithm, which is called Tree-Based Association Rule mining
(TBAR), redefines the notion of item and employs an effective tree data structure. It can also use techniques such as
Direct Hashing and Pruning (DHP). Experiments with real-life datasets show that TBAR outperforms Apriori, a well-
known and widely used algorithm. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

KDD, which stands for Knowledge Discovery in Databases, has been defined as the non-trivial
extraction of potentially useful information from a large volume of data where the information is
implicit (although previously unknown).

Data Mining is a generic term which covers research results, techniques and tools used to
extract useful information from large databases. Data Mining algorithms are included in the
KDD process, which also involves data preprocessing and result interpretation. It should be noted
that KDD is more general than Data Mining. If KDD were reduced to Data Mining, it would be
no more than data dredging and not Knowledge Discovery.

Association rules are one of the most popular Data Mining techniques. They are particularly
useful for discovering relationships among data in huge databases.

Association rule mining has been traditionally applied to databases of sales transactions (re-
ferred to as basket data). A transaction 7 is a set of items and contains a set of items /if I C T.
Such a set of items is called k-itemset, where k is the number of items in the set.
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An association rule is an implication X = Y, where X and Y are itemsets with no items in
common. The intuitive meaning of such a rule is that the transactions (or tuples) that contain X
also tend to contain Y. The rule X = Y holds with confidence c¢ if ¢% of transactions (or tuples)
that contain X also contain Y. The rule X = Y has support s if s% of the transactions (or tuples)
in the database contain X U Y.

Given a database, the problem of mining association rules is to generate all the association rules
that have support and confidence greater than the user-specified minimum thresholds MinSupport
and MinConfidence, respectively. The association rule mining problem is usually broken down
into two subproblems:

e Finding all the frequent itemsets (whose support is greater than the user-specified minimum
support threshold), also called covering or large itemsets in the literature. This problem can
be solved by constructing a candidate set of potentially frequent itemsets and identifying the
frequent itemsets within this candidate set. The size of the considered itemsets is progressively
increased until no more frequent itemsets can be found.

o Generating the association rules derived from the frequent itemsets. If X U Y and X are frequent
itemsets, the rule X = Y holds if the ratio of support(X U Y) to support(X) is, at least, as large as
the minimum confidence threshold. It should be noted that the rule will have minimum support
because X U Y is frequent.

Several algorithms have been proposed to solve the problem of association rule mining, from AIS
[3]and SETM [16] to Apriori[6] and all its variants [9,18]. Here we will discuss Apriori, alandmark in
association rule mining, and Direct Hashing and Pruning (DHP) [18] an algorithm developed from
Apriori. The Offline Candidate Determination (OCD) algorithm [17] is similar to the Apriori al-
gorithm but less efficient. See [14] for a comparison of selected algorithms, and [2] for a more ex-
tensive survey of the field. A more rigorous treatment of the algorithmic aspects of association rule
mining has recently been published [15]. More references can be found in the aforementioned papers.

In this paper, we will place special emphasis on the application of association rule mining to
relational databases, since a large number of relational systems are now in the market and most
distributed database systems are also relational. This makes relational databases a good target for
Data Mining.

The notion of item must be redefined in a relational database. Henceforth an item will be a pair
a : v, where a is an attribute (a column in a relational table) and v is the value of a. A tuple ¢
contains an item « : v if its column « has the value v. A tuple ¢ contains an itemset 7 if it contains
all the items in itemset /.

A fundamental property of the itemsets derived from a relational table is that they cannot
contain more than one item per table column. All items in any given itemset must belong to
different table columns. In other words, if a; : v; and a, : v, belong to an itemset /, with v # vy,
then a; # a,. This is just a consequence of the First Normal Form (INF): a relation is in 1NF if all
its attribute domains contain only atomic values. The property above will allow us to prune the
candidate set during itemset generation and justifies our distinction between items in transactional
databases and items in relational databases.

The Data Mining algorithms discussed in this paper are independent of the type of database
which the KDD process is applied to. These algorithms could be applied to a retail organization’s
large database of sales transactions or to a typical relational database (to a simple table or to the
result of a relational expression) with minimal modifications.
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The rest of the paper is organized as follows. In Section 2, we give a brief description of Apriori
and DHP, two well-known algorithms widely used in association rule mining. We then propose
our algorithm, which we have called TBAR, in Section 3. In Section 4, we discuss the performance
results obtained; and, finally, we present our conclusions and suggestions in Section 5.

2. Background

The most time-consuming part of the process is to discover frequent itemsets while the
generation of association rules given the frequent itemsets is straightforward enough. We will
therefore focus our attention on the discovery of frequent itemsets.

Let L; denote the set of all frequent k-itemsets, where L stands for large, and let C; be the set of
candidate k-itemsets (i.e. potentially frequent k-itemsets).

2.1. Apriori algorithm

The Apriori algorithm [6] makes multiple passes over the data to find frequent itemsets. In the
kth pass the algorithm finds all frequent k-itemsets. Each pass consists of two phases: the can-
didate generation phase to obtain C; from L;_;, and the support counting phase to find the fre-
quent itemsets L;. The algorithm terminates once L;, or Cy, is empty. It is assumed that the items
in an itemset are lexicographically ordered. A hash-tree data structure is used to store and manage
C; efficiently.

It should be noted, however, that the way Apriori finds all the frequent itemsets is not the only
possible approach to solving this problem. In [13], for example, there is no need to build a
candidate set of potentially relevant itemsets.

2.1.1. Candidate generation
In the candidate generation phase, the set of all (k — 1)-itemsets found in the (k — 1)th pass is

used to generate the candidate itemsets C;. C; is necessarily a superset of L, the set of all frequent

k-itemsets. Since all subsets of a frequent itemset are also frequent, C, can be obtained from L;_,

as follows:

o Join step: A superset of Cy is created by joining L;_; with itself, which can be done effectively
when items and itemsets are lexicographically ordered. Candidate k-itemsets are then obtained
by the natural join L;_| >< L;_1 on the first £ — 2 items of L;_;.

o Prune step: All itemsets ¢ € C; with some (k — 1)-subsets not in L;_; are deleted. After the join
step, we know that two of the (k — 1)-subsets of the itemsets in C; are already frequent. The
remaining k£ — 2 subsets must be checked by using additional joins.

2.1.2. Support counting

The database is scanned in the support counting phase. For each transaction, the candidates in
C; also contained in the transaction are determined and their support count is increased by one.
At the end of the scan, the support counts are examined to determine which candidates are fre-
quent. A hash-tree data structure is used to count the occurrences of every itemset efficiently.

2.1.3. Mining association rules in relational databases with Apriori
Minor modifications are needed to adapt Apriori to the problem of mining association rules in
relational databases. Using the fundamental property of the itemsets in relational databases (i.e.
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they cannot contain more than one item per table column), the join step in the candidate gen-
eration phase is adapted to reflect this and to prune the candidate set by not taking into account
itemsets which are not in 1NF.

2.2. Direct hashing and pruning

The DHP algorithm [18] was devised from Apriori. Like this algorithm, DHP uses a hash-tree
data structure to store itemsets. In addition, this algorithm employs a hash table for (k + 1)-
itemsets when counting k-itemsets. Each bucket of the hash table contains the sum of the number
of occurrences for all existing (k + 1)-itemsets with the same hash value. When creating Cy,;,
given a (k + 1)-itemset, if the count stored in the bucket corresponding to that itemset is less than
the minimum support threshold (MinSupport) then the itemset is not included in C,,, since it
cannot be frequent.

The use of such a hash table during the first iterations allows smaller candidate sets to be
generated. It is important to remember that determining the frequent itemsets from a huge
amount of candidate itemsets is the most time-consuming part of the process.

For later iterations, Apriori may be used to reduce the overhead caused by using the additional
hash table. In any case, the improvements in performance obtained with this technique depend
heavily on the nature of the available dataset. These will be remarkable in typical databases of
sales transactions but could be null in a relational table with data collected to solve a classification
problem.

Moreover, DHP reduces the size of the database at each iteration. If a transaction contains one
frequent (k + 1)-itemset, it must contain at least £ + 1 frequent k-itemsets. Those transactions that
cannot contain (k + 1)-itemsets can be discarded, thus reducing the size of the database in future
iterations. It should be noted that this transaction trimming might not be applicable if there is not
enough space available to store the temporary databases used in each iteration.

3. T (TBAR): Tree-based association rule mining

TBAR, which stands for Tree-Based Association Rule mining, employs a different data
structure to represent the sets of candidate and frequent itemsets in order to reduce the computing
resources needed by the association rule mining algorithm (both CPU time and storage re-
quirements). TBAR stores all the itemsets found in a tree data structure which is similar to a set-
enumeration tree. We will first briefly describe the TBAR algorithm in Section 3.1 and we will
then examine the tree data structure in greater depth in Section 3.2.

3.1. TBAR overview

The TBAR algorithm follows the same philosophy as most association rule mining algorithms:
first it finds frequent itemsets, and then it generates association rules with the previously found
itemsets. The introduction of a new data structure to manage the itemsets, which we have called
the itemset tree, is of prime importance.

3.1.1. Relevant itemsets
The first step in our data mining algorithm is to discover potentially interesting patterns (also
called frequent, covering or large itemsets in the literature).
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Within the standard association rule mining framework, we must find all the itemsets whose
support is at least MinSupport, although other interest measures could be used. The large itemset
method has in fact been heavily criticized [1,2].

It is because of these criticisms that we refer to such potentially interesting itemsets as ‘relevant
itemsets’ instead of ‘frequent itemsets’. We will use the following algorithm to find all the relevant
itemsets:

set.Init (MinSupport);

itemsets=set.Relevants(1l);

k=2;

while (kK < columns && itemsets = k) {
itemsets=set.Candidates (k);
if (itemsets>0)

itemsets =set.Relevants(k);

k++:

b

}

where set denotes the itemset tree data structure. The method Init creates and initializes the
data structure. Relevants (k) generates L, while Candidates (k) creates C, from L;_;. Both
methods return the number of itemsets in the last generated set. All these methods will be
described more thoroughly in Section 3.2.

It should be noted that, in a relational database, the maximum number of items in an itemset is
equal to the number of columns in the relational table (or the number of columns in the result of a
relational expression).

Obviously, you cannot expect to obtain a relevant k-itemset from an empty candidate set since
C; must be a superset of L;.

Furthermore, you cannot find a relevant k-itemset if you do not have at least k relevant (k — 1)-
itemsets because every subset of a relevant itemset is also a relevant itemset. This property is
exploited by Apriori [6] and OCD [17] to reduce the size of C; during the candidate generation
phase.

3.1.2. Association rules

Once all the relevant itemsets have been found, the association rules derived from them can be
obtained by the proper traversal of the itemset tree. The user-specified threshold MinConfidence is
employed to obtain all the association rules with enough confidence to be considered potentially
interesting. Of course, the format of the association rules or the itemsets involved at this stage can
also be restricted to obtain only some of the association rules which can be derived from the
itemsets in the itemset tree (see [7,22] for related information).

The association rule generation given the relevant itemset tree is performed by the Rules
method of the TBAR data structure, which will be described in the following section.

3.2. TBAR data structure

A unique tree is used to store all the itemsets found during the Data Mining process. This
compact representation provides substantial storage savings when compared to the Apriori al-
gorithm.
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We will use an example to illustrate the data structure employed by TBAR. Suppose that, after
some preprocessing, you have obtained the simple dataset shown in Table 1 and that MinSupport
is set at 40% (i.e. 2 tuples out of 5). From the previous dataset, the relevant itemsets presented in
Table 2 can be obtained.

These sets of itemsets can be represented by a set-enumeration tree, and a compact represen-
tation of such a tree is shown in Fig. 1. This kind of tree requires less memory space and is more
suitable for our algorithm purposes.

It should be noted that the items are lexicographically ordered, as in Apriori. The number of -
itemsets contained in the itemset tree equals the number of items located at level L[k]. The cor-
responding k-itemsets can be retrieved by concatenating the items found in the paths from the
root of the tree to each item located at level L[k]. The support of any k-itemset is stored in the tree
accompanying the kth item of the itemset.

A hash table can be used within a node for optimization purposes when the number of items in
a node is greater than a given threshold. Such a hash table can be indexed by the pair a : v. This
hashing technique allows efficient access to the itemsets stored in the itemset tree and is analogous
to the one used in a hash tree by the Apriori algorithm.

The candidate generation phase of the algorithm is quite simple. In order to generate C;,;, you
must create a child node for each item a : v at level L[k], and put in it all the items which appear at

Table 1
A simple dataset derived from a real-life database (the information is encoded)

A B C
0 0 0
0 0 1
0 1 1
1 1 1
1 1 1
Table 2
Relevant itemsets derived from dataset in Table 1
Set Itemsets Cardinality
L[k] {items} [support] #L[k|
L[1] {4 :0}[3] 5
{4:1}]2]
{B:0}2]
{B:1}]3]
{C:1}[4]
L[2] {4:0,B:0}]2] 5
{4:0,C:1}]2]
{4:1,B:1}]2]
{4:1,C:1}[2]
{B:1,C:1}]3]
L3 {4:1,B:1,C: 1} [2] 1
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A:0 A:l B:0 B:1 cC:1
;31 | r21 | 21 | 131 | 14 Level LI1l
Pt :
B:0 Cc:1 B:1 c:1 Cc:1
21 | 121 21 | e [3] Level Li21
C:1
[2] Level L[3]

Fig. 1. Itemset tree corresponding to the itemsets shown in Table 2.

the right of a : v at level L[k]. The items with the same attribute as a : v can be discarded when
working with relational databases (recall INF). After that, the support of each candidate (k + 1)-
itemset in the tree is counted and all the non-relevant itemsets are pruned, thus leaving L, at
level L[k + 1] of the tree.

In the following paragraphs we will look at the different primitives needed to work with the
itemset tree Abstract Data Type (ADT) in greater detail.

3.2.1. Itemset tree initialization

The Init primitive creates the itemset tree data structure, sets its parameters (e.g. MinSup-
port), includes all the items found in the database (i.c. the candidate set C;) in the tree, and collects
some extra information. This information is necessary if hashing techniques are used to provide
efficient access to the itemsets in the tree, and also if direct hashing and pruning is used within
TBAR, since DHP is optional in our algorithm (see Fig. 2).

3.2.2. Relevant itemsets
A call to Relevants (k) is used to obtain L,. This primitive of the itemset tree ADT obtains
all the relevant k-itemsets, given that the itemset tree contains the candidate k-itemsets. It

Hash table
A:0 A:l B:0 B:1 C:0 c:1
(21 | te1 | re1 | a1 | ren | e Level LI1]

Fig. 2. Itemset tree after initialization (with a hash table in the root node).
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Hash table

NN

A:0 A:l B:0 B:1 Cc:1
[3] [2] [2] [3] [4]1

Level L[1]

Fig. 3. Itemset tree after support counting and non-relevant itemset pruning.

performs a complete scan of the database to count candidate k-itemsets support and prunes non-
relevant k-itemsets.

If a MinSupport threshold is used, the relevant itemsets will be those candidate k-itemsets
whose support count after the database scan is higher than the user-specified threshold. Other
interest measures could also be used (e.g. see [1]).

In order to count the candidate k-itemsets support efficiently during the database scan, several
hashing techniques can be used. In this way, the number of comparisons needed to traverse the
tree is minimized.

The final pruning step is trivial: all that remains to be done is to remove all the items corre-
sponding to non-relevant k-itemsets from the nodes at level L[] (see Fig. 3).

3.2.3. Candidate generation

The Candidates (k) primitive is in charge of the candidate k-itemset generation. As stated
earlier, the process consists in copying all the items to the right of a given item in the current node
to a newly created child node. This copy mechanism can be restricted to only generate feasible
itemsets. In a relational table, for example, an itemset cannot contain two items related to the
same column. TBAR is also able to reduce the number of potentially relevant itemsets by using
techniques such as DHP.

It is worthwhile mentioning that the prune step in the candidate generation phase of Apriori
has been suppressed in TBAR because the savings obtained as a result of reducing the size of the
candidate set do not compensate for the additional overhead. In fact, since the candidate set needs
to be computed and stored anyway, and TBAR tree data structure is efficient enough to access
and update the count of the itemsets it stores (regardless of how many there are), the prune step
does not yield a noticeable improvement in performance.

Moreover, the prune step during candidate generation is only useful when generating C, with
k = 3, while the algorithm bottleneck is usually located at its first stages (C,), where DHP is more
productive. At later stages, even when the number of relevant itemsets is still very high, it is better
to use DHP locally at each node of the itemset tree instead of the Apriori pruning step. It is im-
portant to remember that the higher the number of relevant itemsets, the bigger the candidate set,
and therefore, the bigger the improvements achieved by DHP, which prunes its size (see Figs. 4-6).

3.2.4. Rule generation
The last primitive of the itemset tree ADT, Rules, returns all the association rules derived
from the itemsets contained in the tree. Two tree iterators are needed for this purpose.
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A: A B: B:1 C:1
[3] [2] [21 [3] [4]

B:0 C:1
[21 [21
A:0 A:l B:0 B:1 C:1
31 | r21 | 21 | 31 | 4 Level Z{1]
s :
:0 C: B:1 c:1 C:1
21 | re1 21 | r21 [3] Level L{2]
Fig. 5. Relevant 2-itemsets.
B:0
(31 | 21 | 21 | 31 | m Level LI1]
P 1 :
B:0 C:1 B:1 Cc:1 Cc:1
21 | r21 21 | r21 [3] Level LIZ]
c:1 c:1
[2] [2] Level L[3]

Fig. 6. Candidate 3-itemsets.

The first iterator, called nextRuleItemset, obtains all the relevant k-itemsets with £ > 2
from the itemset tree (i.e. the itemsets from which association rules can be derived). The second
iterator, nextSubItemset, gives all the proper subsets of a given itemset. The following
pseudo-code corresponds to the rule generating algorithm:

// Apply nextRuleltemset to the tree
For each relevant k-itemset /; in the tree with k > 2
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// Generate rules derived from /;
// using nextSubIltemset iterator
For each itemset [; C Ik
// Choose rules with confidence above threshold
If support(/y) = MinConfidence * support(/;)
Output rule ; = (Ix — 1))
with confidence =support(ly)/support(/;)
and support =support(/y)

The nextRuleItemset iterator performs a sequential scan of the set ;. It starts from the
root node of the itemset tree with the empty itemset. First, it tries to expand the current k-itemset
looking for children of the actual node. If no such children exist, it looks for alternative k-itemsets
in the same node of the tree. Finally, if there are no more alternatives, it backtracks to find any
relevant m-itemsets (m < k) derived from the first m — 1 items of the current k-itemset, with a
different mth item.

The nextSubItemset iterator performs a similar traversal of the itemset tree to find proper
subitemsets of a given itemset. It looks for extensions of the current subitemset (starting with the
empty itemset) in a depth-first way, and then backtracks like nextRuleItemset to explore all
the alternatives.

This algorithm shows excellent performance characteristics using the hashing techniques pro-
vided within the itemset tree ADT for the access and retrieval of the itemsets.

It is worth mentioning that the proposed algorithm does not generate duplicate rules, which is
one of the main shortcomings of the rule generation algorithm set out in [6].

4. Experimental results

Apriori and TBAR have been implemented as stand-alone Java applications using Java DataBase
Connectivity (JDBC). The Java standard Call-Level Interface (CLI) was chosen because of its
portability and simplicity. Both algorithms were also coded in C++ using Borland C++ Builder and
Borland Database Engine (BDE), yielding comparatively similar results.

See Sarawagi et al. [20] for a detailed discussion on the implementation alternatives for cou-
pling Data Mining with database systems. The implementation of Apriori as a tightly coupled
application is presented in [5]. Here we opted for a loosely coupled implementation because, al-
though its expected performance is worse, it is database-independent. Enhanced portability
compensates for the loss of performance. If you take advantage of Java platform independence,
loosely coupled implementations of Data Mining algorithms are suitable for use with a wide range
of database management systems. In fact, our implementation can be used directly with the vast
majority of database vendors on the market.

Both TBAR and Apriori algorithms have been applied to several classical datasets, most of
them taken from the UCI Machine Learning Database Repository at http://www.ics.uci.edu/
~mlearn/MLRepository.html
e Golf: This is the simple dataset used by Quinlan [19] in his classic paper on ID3. It is used to

build a tree classifier which decides whether or not to play golf given the weather conditions

(outlook, temperature, humidity, and wind).
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o JVoting records: The VOTE dataset at the UCI Repository includes votes for each of the 435 US
House of Representatives Congressmen on the 16 key votes identified by the Congressional
Quarterly Almanac in 1984. It also includes the party of each Congressman.

e Soybean database: 1t is also taken from the UCI Repository and it was prepared for Soybean
Disease diagnosis. This dataset contains 683 instances for 19 different classes with 35 predictor
attributes.

o Mushroom database: This dataset, also from the UCI Repository, includes descriptions of 8124
hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepi-
ota Family. Each species is identified as definitely edible, definitely poisonous, or of unknown
edibility and not recommended. The last class was combined with the poisonous one. The sam-
ples have 22 predictor attributes and 2480 missing values.

o Census database: This collects data extracted from the census bureau database found at http://
www.census.gov/ftp/pub/DES/www/welcome.html. More details about the meaning of the par-
ticular attributes can be found at http://www.bls.census.gov/cps/cpsmain.htm. This database is
usually employed to determine the income level for the person represented by each record
(above or below $50K USD). It should be noted that the original CENSUS database which
we used in our experiments has been replaced by the ADULT database in the UCI Repository.
The results we obtained using the above datasets are summarized in Table 3. All the experi-

ments have been performed on three different configurations using Sun Java Development Kit

(JDK) 1.2.2:

o Configuration 1: Standard PC. A 166 MHz Pentium PC with 32 MB EDO RAM running MS
Windows NT 4.0 Workstation and Personal Oracle Lite 3.0.

o Configuration 2: Standard PC accessing a high-performance PC server. A 90 MHz Pentium-
based PC (running Microsoft Windows NT 4.0 Workstation with 32 MB of main memory) run-
ning the Data Mining application while the database was located on a dual 333 MHz Pentium
II MMX PC with 128 MB SDRAM with Oracle 8i Relational DBMS and Windows NT 4.0
Server. Both client and server were connected via TCP/IP through a low workload 10 Mbps
Ethernet LAN.

Table 3
Experimental results (without using DHP)
Dataset Description Size (in items) Relevant Timings (in s) for the different configurations
itemsets
1 Golf 0.07K 104 Apriori 0.9 - -
TBAR 0.6 - -
2 Voting records 7.4K 6734 Apriori 102 36 7.5
TBAR 70 23 5.0
3 Soybean database 24.6K 70047 Apriori 998 272 65
TBAR 259 69 15
4 Mushroom 186.9K 29807 Apriori 1743 583 151
database
TBAR 688 188 38
5 Census database 3. M 101456 Apriori - - 8975

TBAR - - 3414
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o Configuration 3. High-performance PC server. Data Mining application and Oracle 81 DBMS
server running on the dual Pentium II described in the previous configuration.

It should be noted that the timings corresponding to TBAR (even without using DHP) are
always better than those achieved by Apriori. All the results displayed in Table 3 were obtained
without using ‘Direct Hashing and Pruning’ (DHP), since DHP is just an additional technique
which can be used to improve the performance of any algorithm based on Apriori (and TBAR
certainly is).

TBAR can also use DHP locally at each node of the itemset tree, which achieves even better
results. Table 4 shows that TBAR is still much better than Apriori when DHP is employed to
reduce the size of the candidate set.

TBAR outperforms Apriori even for simple datasets. When there is an increase in the number
and size of the patterns discovered, the performance gap between the algorithms becomes more
important.

TBAR is not only faster than Apriori, it also requires less memory (which delays swapping
pages in and out). This is specially relevant when memory resources are scarce, i.e. when the data
mining algorithm is running on the user PC (configurations 1 and 2). TBAR also produces less
memory fragmentation, which helps the Java garbage collector to perform its work more effi-
ciently and allows the continued execution of the mining algorithms on several datasets without
the need to restart the Java Virtual Machine. This aspect is essential in web services such as
servlets, for example (see Figs. 7 and 8).

One of the dominating factors for the overall running time is obviously the database scan
required at each iteration. This becomes especially important in the census database and justifies
the smaller speed-up obtained with our algorithm for that dataset. In any case, the relative per-
formance of TBAR against Apriori shown in Fig. 9 illustrates the computational improvements
offered by TBAR. It should be noted that, the more iterations performed, the better the relative
speed-up obtained with TBAR, as shown in Figs. 10-12.

The experimental results show that TBAR, as any Apriori-based algorithm does, scales up
linearly on the size of the input dataset. TBAR outperforms Apriori when there are thousands of
relevant itemsets and also when their size is increased, so it is better for mining long patterns from
databases.

The time required by Apriori quadruples the time spent by TBAR for the soybean database. It
is remarkable that TBAR is able to find all relevant 5-itemsets in the same time required by
Apriori to discover up to the 4-itemsets in that dataset.

Working on the mushroom database, as it did with the soybean database, TBAR finds all
relevant 4-itemsets (of which there are thousands) in the time needed by Apriori to obtain only up

Table 4
DHP effect on running time (Apriori + DHP vs. TBAR + DHP)

Dataset Apriori+ DHP (s) TBAR + DHP (s) Speed-up
Voting records 9.3 3.0 x 3.1
Soybean 26.9 8.0 x3.4

Mushroom 76.9 31.3 x2.5
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Fig. 8. Timings corresponding to configuration 3 when L[4] is found for all datasets.

to the relevant 3-itemsets. Moreover, TBAR encounters all 5-itemsets before Apriori obtains the
4-itemsets (besides the fact that Apriori needs secondary storage resources while TBAR runs
exclusively on main memory).
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Fig. 10. Soybean database.

We have also tested our algorithm and Apriori with a larger dataset, the Census Bureau
Database, and the improvement in performance achieved by TBAR is maintained. The numeric
attributes in this dataset (i.e. AHRSPAY, CAPGAIN, CAPLOSS, DIVVAL, MARSUPWT, and
WKSWORK) were treated as categorical attributes and their numeric values were grouped into
intervals by using clustering algorithms (such as the well-known K-Means). For example,
WKSWORK was considered as 0, [1,40], [41,52], and MARSUPWT was split into five intervals
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Fig. 11. Mushroom database.

using equi-depth partitioning (see [21]). Two sample association rules discovered from this dataset
were:

if asex= ‘Female’ then income<50000

with confidence=97.4% and support=>50. 6%
if asex= ‘Male’ then income<50000

with confidence=289. 8% and support=43.1%

5. Conclusions

We have presented and evaluated TBAR, an acronym which stands for Tree-Based Association
Rule mining. TBAR is an effective algorithm for association rule mining which outperforms the
Apriori algorithm. TBAR uses an optimized tree data structure and several hashing techniques
(including DHP) to improve the relevant itemset generation phase of association rule mining.

TBAR assumes that if a given itemset is relevant, then all its subsets must also be relevant.
Frequent itemsets satisfy this monotonicity property, although other criteria could be used. This
subset requirement is essential for any algorithm based on generating a candidate set of poten-
tially relevant itemsets. Both Apriori and TBAR follow this approach.

TBAR has been incorporated into a relational-oriented Data Mining tool currently under
development. Our TBAR implementation also permits the definition of domains (which can
overlap) for the attributes found in the database. In our prototype system, a domain is a set of



62 F. Berzal et al. | Data & Knowledge Engineering 37 (2001) 47-64

10000 — /

8000 —

6000 —

4000 —

2000 —

Time (in seconds)

0 | |

L[1] L[2] L[3]
Relevant itemsets

D Apriori
B TBAR

Fig. 12. Census database.

values which are considered to be equivalent. This grouping of values allows, for example, the
automatic clustering of numeric attributes using intervals [21].

The TBAR algorithm has been devised to outperform Apriori in relational databases and like
this well-known algorithm, it can be adapted to alternative models of association rule mining [1]
and can also be used for classification problems [7].

Concurrently to our work on association rule mining, a similar data structure for mining long
patterns from databases has been proposed in [8]. The algorithm described in that paper, called
MaxMiner, resembles the philosophy of our algorithm. MaxMiner and TBAR were designed with
different objectives and although they are similar, TBAR requires less memory and works better
for association rule mining while MaxMiner is optimized to find large itemsets without finding all
their subsets.

An incremental updating technique for the maintenance of the discovered association rules [10—
12] can also be easily developed from TBAR.

Although a parallel version of TBAR has not yet been implemented, a parallel version of our
algorithm could be derived from parallel versions of Apriori with minor modifications. Several
alternative parallel versions of Apriori are explored in [4].
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