

Diseño conceptual Diseño de bases de datos

Documento de especificación del sistema

- 1. Definición del problema
- 2. Descripción funcional
- 3. Restricciones
- 4. Diagramas de flujo de datos
- 5. Modelo de datos
- 6. Diccionario de datos
- 7. Casos de uso
- 8. Documentos adicionales

Herramientas de especificación

Durante el desarrollo de un sistema de información, se han de modelar tanto los datos empleados por el sistema como los procesos que realizan tareas sobre esos datos:

Modelado de datos

- Representación gráfica del modelo de datos
- Diccionario de datos

Modelado de procesos

- Diagramas de flujo de datos
- Diagramas de estados (autómatas finitos)
- Casos de uso

- Técnica de análisis basada en la identificación de las entidades y de las relaciones que se dan entre ellas en la parte de realidad que pretendemos modelar.
- Existen notaciones alternativas para la representación gráfica del diseño conseguido mediante la técnica de análisis que propone el modelo E/R:
 - Diagramas E/R
 - Diagramas UML (Lenguaje Unificado de Modelado)
 - Diagramas CASE*Methodo
 - Diagramas ORM (Object-Role Modeling)
 - Diagramas IDEF1X

Elementos del modelo E/R

Entidades (conceptos de interés):

Objetos, reales o abstractos, distinguibles de otros objetos.

 Al grupo de entidades con cualidades similares acerca de los cuales se almacena información se le denomina tipo (o, simplemente, conjunto de entidades).

p.ej.

Un libro concreto o un escritor.

Elementos del modelo E/R

Atributos (características de las entidades)

Propiedades asociadas a un conjunto de entidades.

- Mediante los atributos representamos las propiedades de los objetos de nuestro interés.
- Para cada atributo, existe un conjunto de valores permitidos llamado dominio.

p.ej. Del libro: Título, ISBN, edición, número de páginas.,

Del escritor: Nombre, apellidos, fecha de nacimiento...

Elementos del modelo E/R

Relaciones (conexiones o asociaciones):

Conexiones semánticas entre conjuntos de entidades.

p.ej.

Relación entre los escritores y los libros que han escrito.

Preparación de un modelo entidad/relación:

- 1. Identificación de las entidades.
- 2. Identificación de las relaciones.
- 3. Identificación de los atributos.
- 4. Revisión.

Preparación de un modelo entidad/relación:

En la etapa de diseño lógico de la base de datos, se procederá a la normalización de la base de datos.

Intuitivamente,

1NF Todos los atributos de una relación toman valores atómicos.

2NF Todos los atributos de una relación dependen funcionalmente de las claves candidatas de la relación (y no de partes de ellas).

3NF El valor de un atributo no puede determinarse a partir de los valores de otros atributos que no formen una clave candidades.

Ejemplo:

Requerimientos (restricciones semánticas)

- Los alumnos se matriculan de varias asignaturas (al menos una).
- Una asignatura puede tener varios alumnos matriculados.
- Todo profesor pertenece a un departamento concreto.
- Todo departamento debe tener un director, que es un profesor.
- Un profesor puede impartir varios grupos de la misma asignatura (o de asignaturas diferentes).
- Un grupo de una asignatura ha de estar impartido, al menos, por un profesor.
- Las clases de cada asignatura se imparten en días, horas y aulas determinadas.
- Los atributos de cada entidad son "los habituales".

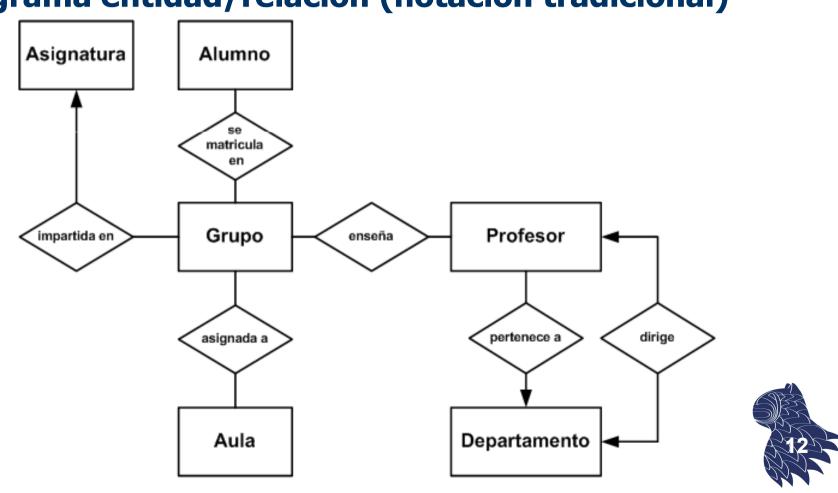
Ejemplo:

Identificación de entidades, atributos y relaciones

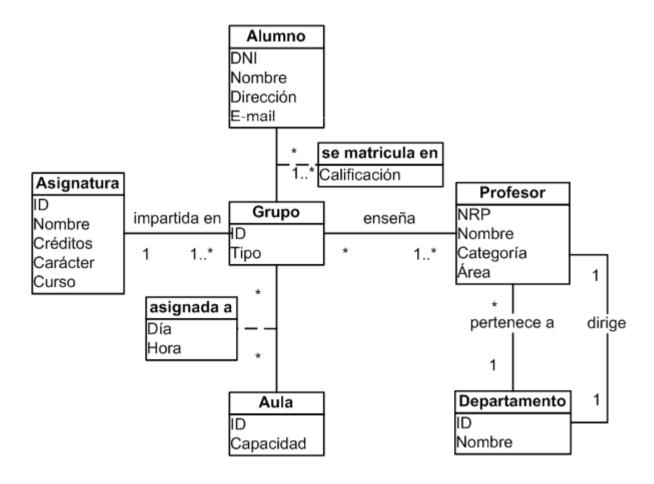
Entidades	Asignatura	Alumno	Profesor	Departamento	Aula	Grupo
Atributos	ID Nombre Créditos Carácter Curso 	<u>DNI</u> Nombre Dirección E-mail 	NRP Nombre Categoría Área 	<u>ID</u> Nombre	<u>ID</u> Capacidad	<u>ID</u> Tipo

Ejemplo:

Identificación de entidades, atributos y relaciones


Relación	Entidades participantes	Cardinalidad	Atributos
se matricula en	Alumno – Grupo	N:M	Calificación
enseña	Profesor – Grupo	N:M	
impartida en	Asignatura – Grupo	1:N	
asignada a	Aula – Grupo	N:M	Día, hora
pertenece a	Profesor – Departamento	N:1	
dirige	Profesor – Departamento	1:1	

Ejemplo:


Diagrama entidad/relación (notación tradicional)

Ejemplo:

Diagrama entidad/relación (notación UML)

Representación gráfica del modelo E/R

Tipo de entidad

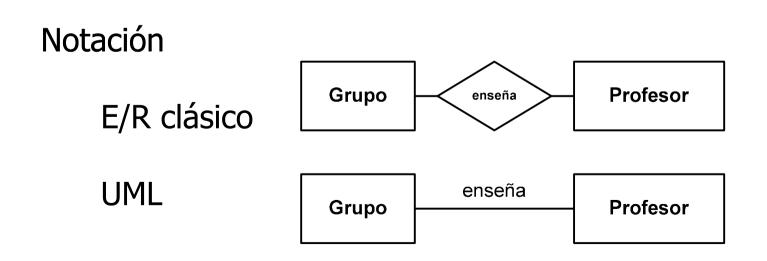
Grupo de objetos que tienen las mismas propiedades y que en la organización para la que va a servir la BD tienen una existencia independiente, bien sea física o abstracta.

Notación

Asignatura

Grupo

Alumno



Representación gráfica del modelo E/R

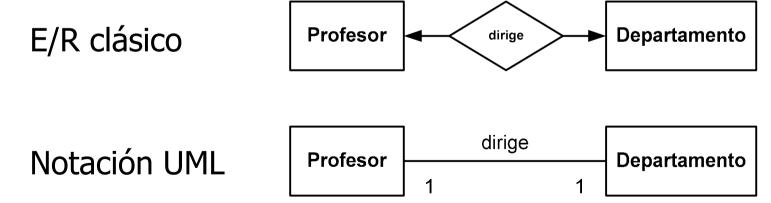
Tipo de relación

Asociación que se establece entre tipos de entidad para representar un conjunto de relaciones que se establecen entre las ocurrencias de esos tipos de entidades.

Representación gráfica del modelo E/R Características de las relaciones

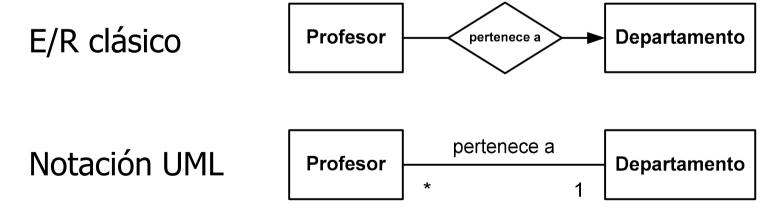
- Grado: Número de tipos de entidades que participan en la conexión.
- Cardinalidad: Número de elementos de un tipo que se conectan con un elemento de otro (restricción que se observa en el dominio del problema y que controla las ocurrencias de las relaciones).

En el caso de las relaciones binarias (grado 2):


- Relaciones muchos a muchos (n:m)
- Relaciones uno a muchos (1:m)
- Relaciones uno a uno (1:1)

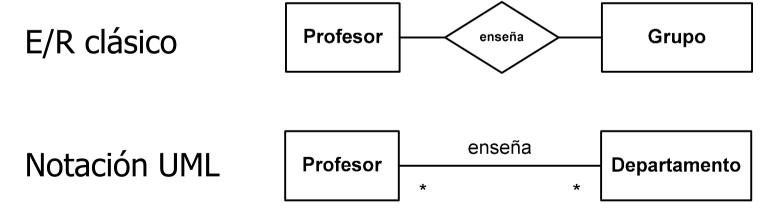
Representación gráfica del modelo E/R Cardinalidad máxima de una relación

Relación uno a uno



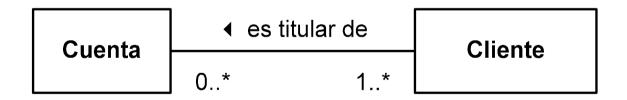
Representación gráfica del modelo E/R Cardinalidad máxima de una relación

Relación muchos a uno



Representación gráfica del modelo E/R Cardinalidad máxima de una relación

Relación muchos a muchos



Representación gráfica del modelo E/R Cardinalidad mínima de una relación

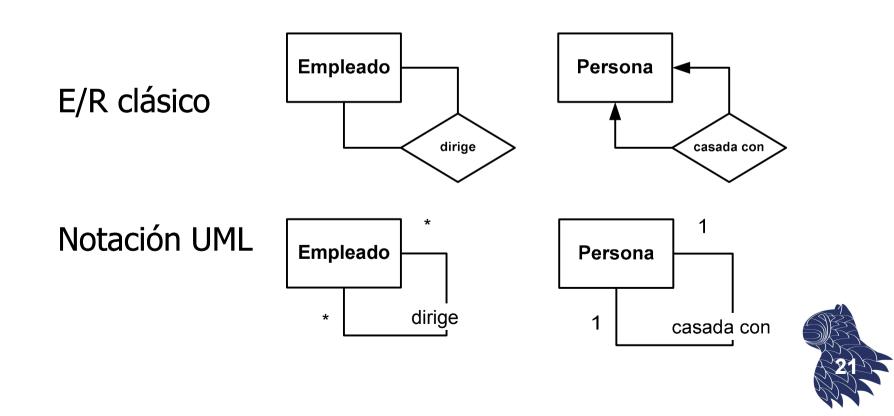
La notación UML permite especificar la cardinalidad mínima de una relación (p.ej. su obligatoriedad).

Relación opcional

Un cliente puede o no ser titular de una cuenta

Relación obligatoria

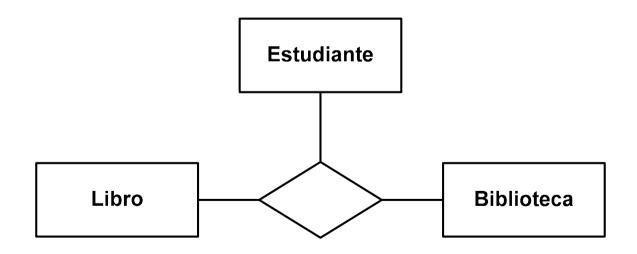
Una cuenta ha de tener un titular como mínimo



Representación gráfica del modelo E/R

Relaciones involutivas

Relaciones de un tipo consigo mismo

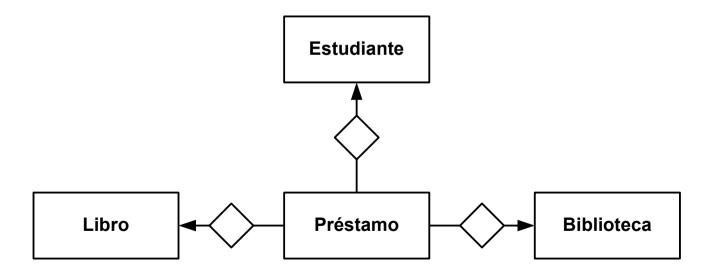


Representación gráfica del modelo E/R

Relaciones n-arias

El grado de una relación no tiene por qué ser siempre 2.

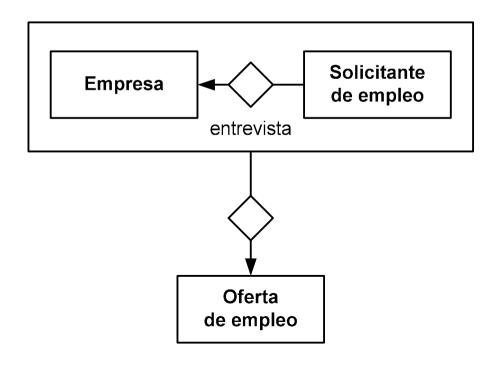
Pueden existir relaciones ternarias, cuaternarias...



Representación gráfica del modelo E/R

Relaciones n-arias

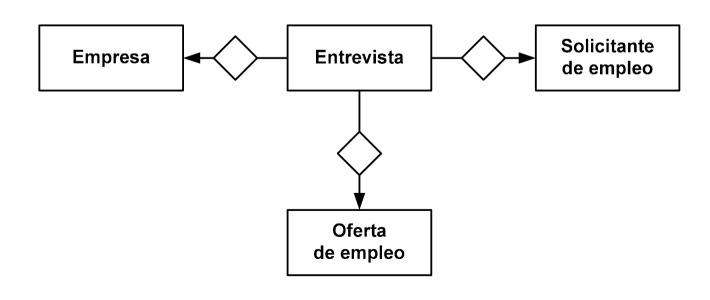
En la práctica, a menudo se reemplaza una relación n-aria por nuevo tipo de entidad y un conjunto de relaciones binarias:



Representación gráfica del modelo E/R

Agregaciones

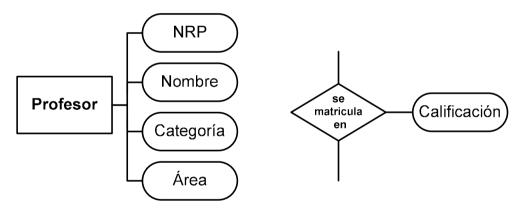
para expresar relaciones entre relaciones o relaciones entre relaciones y conjuntos de entidades.



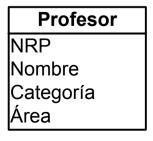
Representación gráfica del modelo E/R

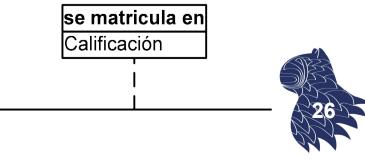
Agregaciones

En la práctica, también se pueden eliminar si creamos un nuevo tipo de entidad que represente la relación que dio lugar a la agregación:



Representación gráfica del modelo E/R


Atributos


Propiedades que caracterizan a las ocurrencias de un tipo de entidad o de un tipo de relación.

E/R clásico

Notación UML

Atributos

Tipos de atributos

Atributos compuestos vs. Atributos simples (atómicos)
 Los atributos compuestos se pueden dividir en componentes más pequeños con significado propio

p.ej. dirección = calle + municipio + CP + provincia

 Atributos monovaluados vs. Atributos multivaluados Un atributo monovaluado tiene un único valor para una entidad particular.

Atributos

Tipos de atributos

Atributos almacenados vs. Atributos derivados

p.ej.

la edad de una persona [atributo derivado] se puede calcular (derivar) de su fecha de nacimiento [atributo almacenado], que es lo que almacenaremos en la base de datos.

Atributos

Claves

Conjuntos de atributos que permiten identificar unívocamente a una entidad dentro de un conjunto de entidades.

ISBN 978-1-934293-06-5

p.ej. Del libro: ISBN

Del escritor: (nombre, apellidos, fecha de nacimiento)

Claves

- Superclave: Conjunto de atributos que permite identificar unívocamente a una entidad dentro de un conjunto de entidades.
- Clave candidata:
 Superclave con un número mínimo de atributos.
- Clave primaria: Clave candidata elegida por el diseñador de la base de datos para identificar unívocamente a las distintas entidades de un tipo.
- Clave alternativa: Cualquiera de las claves candidatas no elegidas por el diseñador de la base de datos.

Claves

Ejemplos

<u>Profesor</u> {Nombre} no es una clave

{NRP} es una clave candidata

{NRP, Nombre} es una superclave

{Nombre, Despacho} podría serlo (¿o no?)

<u>Película</u> {Título} no es una clave

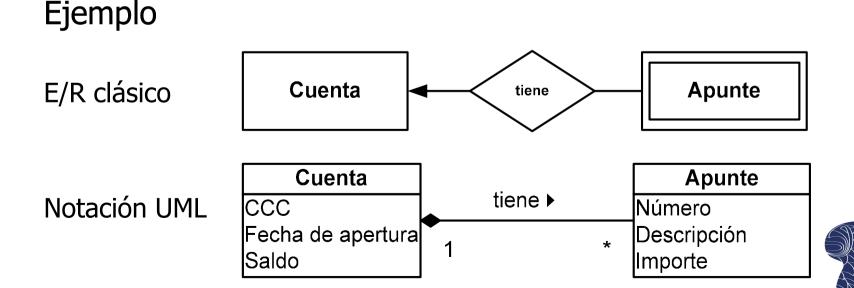
{Título, género, año} podría serlo

{Título, director, año} es una clave

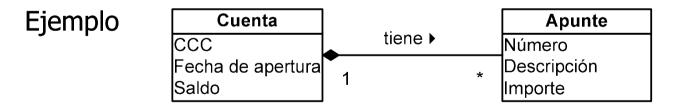
Claves de una relación

Las claves nos permiten diferenciar entre sí las distintas entidades... concepto que podríamos aplicar de la siguiente forma a las relaciones:

Las claves de las relaciones vienen definidas por las claves de las entidades relacionadas:


- Relaciones muchos a muchos (N:M): La clave primaria será la unión de las claves primarias de las entidades participantes en la relación.
- Relaciones uno a muchos (1:N): La clave primaria de la entidad que interviene en la relación con aridad N.
- Relaciones uno a uno (1:1): Las claves primarias de las entidades participantes son claves candidatas de la relación entre entidades.

Entidades fuertes y entidades débiles


Un tipo de entidad es fuerte si la existencia de sus ocurrencias no depende de ningún otro tipo. En caso contrario, se dice que el tipo de entidad es débil.

Entidades fuertes y entidades débiles Dependencia existencial

 Si se elimina una ocurrencia del tipo de entidad fuerte, habrá que eliminar las ocurrencias del tipo de entidad débil que dependen de ella.

Un apunte (entidad débil) sólo puede existir asociado a una cuenta (entidad fuerte): Si eliminamos una cuenta, sus apuntes han de desaparecerde la base de datos (si no, tendríamos apuntes que corresponderían a una cuenta que no existe).

Entidades fuertes y entidades débiles Claves primarias

La entidad débil no tiene suficientes atributos propios para formar una clave primaria: La clave primaria de la entidad débil incluye a la clave primaria de la entidad fuerte de la que depende existencialmente.

Clave primaria entidad débil = Clave primaria entidad fuerte + Discriminante

p.ej.

{CCC} es la clave primaria de la entidad fuerte "Cuenta" {CCC, Número} es la clave primaria de la entidad débil "Apunte"

Relaciones de especialización y generalización

Supertipo:

Tipo de entidad que incluye uno o más subgrupos distintos de ocurrencias que deben ser representados en el modelo de datos.

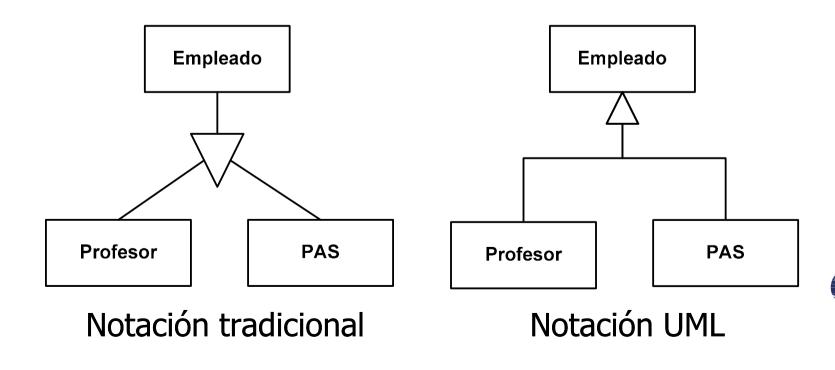
Subtipo:

Cada uno de los subgrupos de ocurrencias de un tipo de entidad que se han de representar en el modelo de datos.

Relaciones de especialización y generalización

Especialización:

Proceso de extraer diferencias entre las ocurrencias de un tipo de entidad para distinguir los subtipos que lo forman.

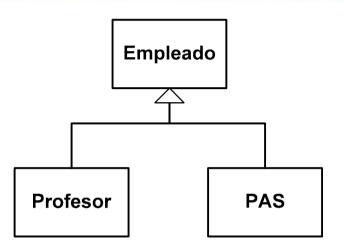

Generalización:

Proceso de encontrar la parte común de las ocurrencias de distintos tipos de entidad para extraer el supertipo que los engloba.

Relaciones de especialización: Relaciones ES-UN

Relaciones que se establecen en un diagrama E/R entre un supertipo y sus subtipos:

Relaciones de especialización Atributos y claves


- Los subtipos heredan los atributos de los supertipos:
 Los subtipos poseen todos los atributos del supertipo más algunos propios.
- La clave primaria de los subtipos es la clave primaria del supertipo.

Relaciones de especialización

Restricciones

Participación:

Determina si un miembro de la superclase debe obligatoriamente ser un miembro de una subclase.

Exclusividad:

Determina si un miembro de una subclase puede ser, a la vez, miembro de otras subclases.

Descripción escrita de los datos almacenados en la base de datos (y de las restricciones de integridad que sean aplicables).

p.ej.

Descripción de entidades, atributos y relaciones Especificación del dominio de cada atributo Identificación de atributos derivados

El diccionario de datos puede organizarse:

- Como un glosario para que sirva de referencia: Lista de términos ordenada alfabéticamente en la que cada término aparece definido formalmente, con referencias cruzadas entre términos.
- Como complemento al modelo de datos, en cuyo caso ha de recoger, aparte de la información que ya aparece plasmada en el diagrama correspondiente, todo lo que no se incluye en el diagrama (ya sea para facilitar su legibilidad o, simplemente, porque no puede representarse en él).

Plantilla para entidades

Entidad X

ALIAS (si los hubiera)

Descripción de la entidad

Atributo	Descripción del atributo [Dominio del atributo] [Atributo opcional (¿nullable?)] [Atributo derivado: Algoritmo de derivación]

Claves candidatas

Restricciones adicionales (entre atributos de una misma entidad)

Plantilla para relaciones

Relación Y

ALIAS (si los hubiera)

Descripción de la relación

ENTIDADES INTERVINIENTES

Entidad	Cardinalidad	Rol
		•••

ATRIBUTOS ESPECÍFICOS DE LA RELACIÓN (si los hubiera)

Atributo	Descripción

Ejemplo

Entidad ASIGNATURA

Alias: MATERIA

Asignaturas impartidas en el centro

Atributo	Descripción del atributo	
ID	Código oficial de la asignatura	
Nombre	Nombre completo de la asignatura	
Plan	Plan de estudios al que pertenece la asignatura	
Créditos	Número de créditos de la asignatura (atributo derivado)	
CT	Número de créditos de teoría	
CP	Número de créditos de prácticas	
Carácter	Tipo de asignatura (troncal, obligatoria, optativa)	
Curso	Curso del plan de estudios en el que está incluida la asignatura	

Claves candidatas

⊶ ID

⊕ (Plan, Nombre)

Restricciones adicionales

✓ Créditos = CT + CP

✓ 1 <= Curso <= Número de cursos del plan de estudios

Ejemplo

Relación ASIGNADA A

Asignación de aulas a grupos

ENTIDADES INTERVINIENTES

Entidad	Cardinalidad	Rol
Grupo	*	Grupo de una asignatura
Aula	*	Aula asignada al grupo

ATRIBUTOS ESPECÍFICOS DE LA RELACIÓN

Atributo	Descripción	
Día	Día de la semana (L, M, X, J, V)	
Hora	Hora (HH:00)	
Fecha_inicio	Fecha inicial de uso del aula	
Fecha_final	Finalización de la reserva del aula	

Restricciones

- ✓ Fecha_inicio ≤ Fecha_final
- ✓ (Fecha_inicio₁ ≤ Fecha_inicio₂) && (Fecha_final₁ ≥ Fecha_inicio₂) && (Aula₁=Aula₂) → (Día₁, Hora₁) \neq (Día₂, Hora₂)

Bibliografía

- C.J. Date:
 "Introducción a los sistemas de bases de datos".
 - Prentice Hall, 2001 [7ª edición]. ISBN 968-444-419-2.
- Ramez A. Elmasri & Shamkant B. Navathe: "Fundamentos de Sistemas de Bases de Datos".
 Addison-Wesley, 2007 [5^a edición]. ISBN 84-782-9085-0.
- Thomas M. Connolly & Carolyn E. Begg: "Sistemas de Bases de Datos" Addison-Wesley, 2005 [4ª edición]. ISBN 84-782-9075-3.
- Henry F. Korth, Abraham Silberschatz & S. Sudarshan: "Fundamentos de Bases de Datos".
 McGraw-Hill, 2006 [5^a edición]. ISBN 84-481-4644-1.
- Olga Pons, Nicolás Marín, Juan Miguel Medina, Silvia Acid & Mª Amparo Vila: "Introducción a las Bases de Datos: El modelo relacional". Paraninfo, 2005. ISBN 8497323963